在微发酵水平上酿酒酵母菌和芽孢星菌的生长动态演变,在皮特罗萨酒庄具有潜在的酿酒用途

IF 0.6 Q4 AGRONOMY AgroLife Scientific Journal Pub Date : 2022-12-31 DOI:10.17930/agl202221
I. Bărbulescu, C. Dumitrache, C. Diguță, M. Begea, P. M. Matei, M. Frîncu, Simona Ioana Mărculescu, Alexandru Ciric, V. Tudor, Elena Mirela Boroiu, R. Teodorescu
{"title":"在微发酵水平上酿酒酵母菌和芽孢星菌的生长动态演变,在皮特罗萨酒庄具有潜在的酿酒用途","authors":"I. Bărbulescu, C. Dumitrache, C. Diguță, M. Begea, P. M. Matei, M. Frîncu, Simona Ioana Mărculescu, Alexandru Ciric, V. Tudor, Elena Mirela Boroiu, R. Teodorescu","doi":"10.17930/agl202221","DOIUrl":null,"url":null,"abstract":"The grape surface hosts a complex community of yeast Saccharomyces and non-Saccharomyces species responsible for spontaneous alcoholic fermentation in wine industry. The yeast strains used for this study were isolated from ‘Tămâioasă Românească’ and ‘Busuioacă de Bohotin’ grape varieties from Pietroasa vineyard, and the isolates were identified through a molecular method. Identification of yeast strains through the BLASTn analysis of the 5.8S-ITS region revealed that PFE5 strain showed the best sequence match to Saccharomyces cerevisiae (98% similarity) and PFE15 strain to Starmerella bacillaris (99.78% similarity), respectively. In this first micro-pilot study, the differences between Sacharomyces and non-Saccharomyces yeasts in batch (for Starmella bacillaris) and fed-batch fermentation system (for S. cerevisae) and how these regimes influence the culture growth were assessed. The applied fed-batch process was capable for producing two times more S. cerevisae yeast biomass than Starmella bacillaris through a batch process. In addition, the yield of S. cerevisiae converting the substrate into biomass was 42.3%, almost double compared to the yield of Starmella bacillaris. Moreover, the cell wet weight (WCW) for S. cerevisae was 32.5 g/L and for Starmella bacillaris 15.35 g/L, respectively. Both yeast biomass will be used at Pietroasa winery for inoculation separately or mixed as co-culture for ‘Tămâioasă Românească’ and ‘Busuioacă de Bohotin’ grape juice.","PeriodicalId":44979,"journal":{"name":"AgroLife Scientific Journal","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2022-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"EVOLUTION AT THE MICROFERMENTER LEVEL OF THE GROWTH DYNAMICS OF Saccharomyces cerevisiae AND Starmella bacillaris YEASTS WITH POTENTIAL FOR USE IN WINEMAKING AT THE PIETROASA WINERY\",\"authors\":\"I. Bărbulescu, C. Dumitrache, C. Diguță, M. Begea, P. M. Matei, M. Frîncu, Simona Ioana Mărculescu, Alexandru Ciric, V. Tudor, Elena Mirela Boroiu, R. Teodorescu\",\"doi\":\"10.17930/agl202221\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The grape surface hosts a complex community of yeast Saccharomyces and non-Saccharomyces species responsible for spontaneous alcoholic fermentation in wine industry. The yeast strains used for this study were isolated from ‘Tămâioasă Românească’ and ‘Busuioacă de Bohotin’ grape varieties from Pietroasa vineyard, and the isolates were identified through a molecular method. Identification of yeast strains through the BLASTn analysis of the 5.8S-ITS region revealed that PFE5 strain showed the best sequence match to Saccharomyces cerevisiae (98% similarity) and PFE15 strain to Starmerella bacillaris (99.78% similarity), respectively. In this first micro-pilot study, the differences between Sacharomyces and non-Saccharomyces yeasts in batch (for Starmella bacillaris) and fed-batch fermentation system (for S. cerevisae) and how these regimes influence the culture growth were assessed. The applied fed-batch process was capable for producing two times more S. cerevisae yeast biomass than Starmella bacillaris through a batch process. In addition, the yield of S. cerevisiae converting the substrate into biomass was 42.3%, almost double compared to the yield of Starmella bacillaris. Moreover, the cell wet weight (WCW) for S. cerevisae was 32.5 g/L and for Starmella bacillaris 15.35 g/L, respectively. Both yeast biomass will be used at Pietroasa winery for inoculation separately or mixed as co-culture for ‘Tămâioasă Românească’ and ‘Busuioacă de Bohotin’ grape juice.\",\"PeriodicalId\":44979,\"journal\":{\"name\":\"AgroLife Scientific Journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2022-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AgroLife Scientific Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17930/agl202221\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AgroLife Scientific Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17930/agl202221","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 1

摘要

葡萄表面有一个复杂的酵母菌群落,酵母菌和非酵母菌负责葡萄酒工业中自发的酒精发酵。本研究所使用的酵母菌是从Pietroasa葡萄园的‘t mioasei rom neascei’和‘busuioacei de Bohotin’葡萄品种中分离得到的,并通过分子方法对其进行了鉴定。通过5.8S-ITS区的BLASTn分析对酵母菌进行鉴定,结果显示PFE5菌株与酿酒酵母(Saccharomyces cerevisiae)和PFE15菌株的序列匹配度分别为98%和99.78%。在这第一个微型中试研究中,我们评估了酵母和非酵母在分批发酵系统(用于杆菌Starmella bacillaris)和补料分批发酵系统(用于酿酒酵母S. cerevisae)中的差异,以及这些制度如何影响培养物的生长。采用间歇补料法生产的酿酒酵母生物量是间歇法生产的芽孢星菌的两倍。此外,酿酒酵母将底物转化为生物量的产量为42.3%,几乎是杆菌Starmella bacillaris的两倍。酿酒酵母的细胞湿重(WCW)为32.5 g/L,芽孢杆菌的细胞湿重为15.35 g/L。这两种酵母生物量将在Pietroasa酿酒厂单独接种或混合培养' t mioasei rom neascei '和' busuioacei de Bohotin '葡萄汁。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
EVOLUTION AT THE MICROFERMENTER LEVEL OF THE GROWTH DYNAMICS OF Saccharomyces cerevisiae AND Starmella bacillaris YEASTS WITH POTENTIAL FOR USE IN WINEMAKING AT THE PIETROASA WINERY
The grape surface hosts a complex community of yeast Saccharomyces and non-Saccharomyces species responsible for spontaneous alcoholic fermentation in wine industry. The yeast strains used for this study were isolated from ‘Tămâioasă Românească’ and ‘Busuioacă de Bohotin’ grape varieties from Pietroasa vineyard, and the isolates were identified through a molecular method. Identification of yeast strains through the BLASTn analysis of the 5.8S-ITS region revealed that PFE5 strain showed the best sequence match to Saccharomyces cerevisiae (98% similarity) and PFE15 strain to Starmerella bacillaris (99.78% similarity), respectively. In this first micro-pilot study, the differences between Sacharomyces and non-Saccharomyces yeasts in batch (for Starmella bacillaris) and fed-batch fermentation system (for S. cerevisae) and how these regimes influence the culture growth were assessed. The applied fed-batch process was capable for producing two times more S. cerevisae yeast biomass than Starmella bacillaris through a batch process. In addition, the yield of S. cerevisiae converting the substrate into biomass was 42.3%, almost double compared to the yield of Starmella bacillaris. Moreover, the cell wet weight (WCW) for S. cerevisae was 32.5 g/L and for Starmella bacillaris 15.35 g/L, respectively. Both yeast biomass will be used at Pietroasa winery for inoculation separately or mixed as co-culture for ‘Tămâioasă Românească’ and ‘Busuioacă de Bohotin’ grape juice.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
0
审稿时长
14 weeks
期刊最新文献
WINTER WHEAT MUTATION VARIABILITY UNDER LOW-DAMAGE ABILITY MUTAGEN ACTION ANTIFUNGAL ACTIVITY OF Pediococcus pentosaceus ISOLATED FROM BAMBARA GROUNDNUT (Vigna subterranea (L.) Verdc.) SEEDS AGAINST Aspergillus flavus THE DIFFERENCES IN ARABIAN HORSE BODY MEASUREMENTS USED IN DIFFERENT HORSE SPORTS (RACING AND JEREED) A SHORT NOTE ON WATER QUALITY AND SOME BIODIVERSITY COMPONENTS IN GURBAN VALLEY, GIURGIU COUNTY ANALYSIS OF GENOTYPE X ENVIRONMENT INTERACTION IN TRITICALE LINES WITH AMMI AND PCA
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1