铁、铜、锌硫化物混合物的固态氧化动力学

Q4 Materials Science Chimica Techno Acta Pub Date : 2023-03-30 DOI:10.15826/chimtech.2023.10.2.02
{"title":"铁、铜、锌硫化物混合物的固态氧化动力学","authors":"","doi":"10.15826/chimtech.2023.10.2.02","DOIUrl":null,"url":null,"abstract":"The kinetics of solid-state oxidation by air of iron, copper and zinc sulfide natural mixture, which is typical of the pyritic copper ores, is investigated. Using the high-temperature X-ray powder diffraction, thermogravimetry and differential scanning calorimetry, it was found that the process can be represented by five exothermic elementary reactions, corresponding to intensive burning of iron, copper and zinc sulfides, and two endothermic ones, associated with decomposition of copper and iron sulfates. Kinetic analysis is performed by Kissinger and Augis–Bennett methods, the model-free function mechanism was determined from y(α) master plots and iterative optimization of the kinetic parameters. The limiting steps of these reactions are nucleation and crystal growth, and the values of activation energy, pre-exponential factor and Avrami exponent are in the ranges of 140–459 kJ·mol–1, 1.41·104–3.49·1031 s–1, and 1.0–1.7, respectively. Crystallization is followed by an increase in the number of nuclei, which may be formed both at the interface and in the bulk of the ore particles, and crystal growth is one-dimensional and controlled by a chemical reaction at the phase boundary or diffusion. The results of the work can contribute to the development of theoretical ideas about the physicochemical transformations of pyritic ores and concentrates during pyrometallurgical operations.","PeriodicalId":9964,"journal":{"name":"Chimica Techno Acta","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Kinetics of solid-state oxidation of iron, copper and zinc sulfide mixture\",\"authors\":\"\",\"doi\":\"10.15826/chimtech.2023.10.2.02\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The kinetics of solid-state oxidation by air of iron, copper and zinc sulfide natural mixture, which is typical of the pyritic copper ores, is investigated. Using the high-temperature X-ray powder diffraction, thermogravimetry and differential scanning calorimetry, it was found that the process can be represented by five exothermic elementary reactions, corresponding to intensive burning of iron, copper and zinc sulfides, and two endothermic ones, associated with decomposition of copper and iron sulfates. Kinetic analysis is performed by Kissinger and Augis–Bennett methods, the model-free function mechanism was determined from y(α) master plots and iterative optimization of the kinetic parameters. The limiting steps of these reactions are nucleation and crystal growth, and the values of activation energy, pre-exponential factor and Avrami exponent are in the ranges of 140–459 kJ·mol–1, 1.41·104–3.49·1031 s–1, and 1.0–1.7, respectively. Crystallization is followed by an increase in the number of nuclei, which may be formed both at the interface and in the bulk of the ore particles, and crystal growth is one-dimensional and controlled by a chemical reaction at the phase boundary or diffusion. The results of the work can contribute to the development of theoretical ideas about the physicochemical transformations of pyritic ores and concentrates during pyrometallurgical operations.\",\"PeriodicalId\":9964,\"journal\":{\"name\":\"Chimica Techno Acta\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chimica Techno Acta\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15826/chimtech.2023.10.2.02\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Materials Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chimica Techno Acta","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15826/chimtech.2023.10.2.02","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 0

摘要

研究了硫化铁、铜、锌自然混合物在空气中的固态氧化动力学。利用高温x射线粉末衍射、热重法和差示扫描量热法,发现该过程可表征为五个放热元素反应,对应于铁、铜和锌硫化物的强烈燃烧,以及两个吸热元素反应,对应于铜和铁硫化物的分解。采用Kissinger法和Augis-Bennett法进行动力学分析,通过y(α)主图确定无模型作用机理,并对动力学参数进行迭代优化。这些反应的极限步骤是成核和晶体生长,活化能、指前因子和Avrami指数分别在140 ~ 459 kJ·mol-1、1.41·104 ~ 3.49·1031 s-1和1.0 ~ 1.7之间。结晶之后是核数量的增加,这些核可以在界面和矿石颗粒的整体中形成,晶体生长是一维的,由相边界或扩散的化学反应控制。研究结果有助于发展有关黄铁矿矿石和精矿在火法冶炼过程中物理化学转化的理论思想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Kinetics of solid-state oxidation of iron, copper and zinc sulfide mixture
The kinetics of solid-state oxidation by air of iron, copper and zinc sulfide natural mixture, which is typical of the pyritic copper ores, is investigated. Using the high-temperature X-ray powder diffraction, thermogravimetry and differential scanning calorimetry, it was found that the process can be represented by five exothermic elementary reactions, corresponding to intensive burning of iron, copper and zinc sulfides, and two endothermic ones, associated with decomposition of copper and iron sulfates. Kinetic analysis is performed by Kissinger and Augis–Bennett methods, the model-free function mechanism was determined from y(α) master plots and iterative optimization of the kinetic parameters. The limiting steps of these reactions are nucleation and crystal growth, and the values of activation energy, pre-exponential factor and Avrami exponent are in the ranges of 140–459 kJ·mol–1, 1.41·104–3.49·1031 s–1, and 1.0–1.7, respectively. Crystallization is followed by an increase in the number of nuclei, which may be formed both at the interface and in the bulk of the ore particles, and crystal growth is one-dimensional and controlled by a chemical reaction at the phase boundary or diffusion. The results of the work can contribute to the development of theoretical ideas about the physicochemical transformations of pyritic ores and concentrates during pyrometallurgical operations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chimica Techno Acta
Chimica Techno Acta Chemical Engineering-Chemical Engineering (all)
CiteScore
1.00
自引率
0.00%
发文量
67
审稿时长
4 weeks
期刊最新文献
Investigation of the reaction of dimedone with aromatic aldehydes in the presence of copper oxide nanoparticles Dispersive surface free energy of adsorbents modified by supramolecular structures of heterocyclic compounds Cationic amphiphilic meroterpenoids: synthesis, antibacterial, antifungal and mutagenic activity Photoelectrochemical properties of Pt- and Ir-modified graphitic carbon nitride Features of electronic states in the vicinity of band gap and atomic structure of Ta- and Nb-doped Li7La3Zr2O12
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1