并行体系结构上加速求解线性系统的族集合

IF 0.6 Q4 COMPUTER SCIENCE, THEORY & METHODS International Journal of Parallel Emergent and Distributed Systems Pub Date : 2021-11-25 DOI:10.1080/17445760.2021.2004412
D. Zaitsev, T. Shmeleva, P. Luszczek
{"title":"并行体系结构上加速求解线性系统的族集合","authors":"D. Zaitsev, T. Shmeleva, P. Luszczek","doi":"10.1080/17445760.2021.2004412","DOIUrl":null,"url":null,"abstract":"The paper further refines the clan composition technique that is considered a way of matrix partitioning into a union of block-diagonal and block-column matrices. This enables solving the individual systems for each horizontal block on a separate computing node, followed by solving the composition system. The size of minimal clans, obtained as a result of matrix decomposition, varies considerably. For load balancing, early versions of ParAd software were using dynamic scheduling of jobs. The present paper studies a task of static balancing the clan size. Rather good results are obtained using a fast bin packing algorithm with the first fit on a sorted array which are considerably improved applying a multi-objective graph partitioning with software package METIS. Aggregation of clans allows us to obtain up to three times extra speed-up, including systems over fields of real numbers, on matrices from Model Checking Contest and Matrix Market.","PeriodicalId":45411,"journal":{"name":"International Journal of Parallel Emergent and Distributed Systems","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2021-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Aggregation of clans to speed-up solving linear systems on parallel architectures\",\"authors\":\"D. Zaitsev, T. Shmeleva, P. Luszczek\",\"doi\":\"10.1080/17445760.2021.2004412\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper further refines the clan composition technique that is considered a way of matrix partitioning into a union of block-diagonal and block-column matrices. This enables solving the individual systems for each horizontal block on a separate computing node, followed by solving the composition system. The size of minimal clans, obtained as a result of matrix decomposition, varies considerably. For load balancing, early versions of ParAd software were using dynamic scheduling of jobs. The present paper studies a task of static balancing the clan size. Rather good results are obtained using a fast bin packing algorithm with the first fit on a sorted array which are considerably improved applying a multi-objective graph partitioning with software package METIS. Aggregation of clans allows us to obtain up to three times extra speed-up, including systems over fields of real numbers, on matrices from Model Checking Contest and Matrix Market.\",\"PeriodicalId\":45411,\"journal\":{\"name\":\"International Journal of Parallel Emergent and Distributed Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2021-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Parallel Emergent and Distributed Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/17445760.2021.2004412\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Parallel Emergent and Distributed Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/17445760.2021.2004412","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

本文进一步完善了族合成技术,该技术被认为是将矩阵划分为块对角矩阵和块列矩阵的并集的一种方法。这使得能够在单独的计算节点上求解每个水平块的各个系统,然后求解合成系统。矩阵分解得到的最小族的大小变化很大。对于负载平衡,早期版本的ParAd软件使用作业的动态调度。本文研究了一个静态平衡氏族规模的任务。使用排序数组上的第一次拟合的快速bin填充算法获得了相当好的结果,应用软件包METIS的多目标图划分大大改进了该算法。族的聚合使我们能够获得高达三倍的额外加速,包括实数域上的系统,以及来自模型检查竞赛和矩阵市场的矩阵。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Aggregation of clans to speed-up solving linear systems on parallel architectures
The paper further refines the clan composition technique that is considered a way of matrix partitioning into a union of block-diagonal and block-column matrices. This enables solving the individual systems for each horizontal block on a separate computing node, followed by solving the composition system. The size of minimal clans, obtained as a result of matrix decomposition, varies considerably. For load balancing, early versions of ParAd software were using dynamic scheduling of jobs. The present paper studies a task of static balancing the clan size. Rather good results are obtained using a fast bin packing algorithm with the first fit on a sorted array which are considerably improved applying a multi-objective graph partitioning with software package METIS. Aggregation of clans allows us to obtain up to three times extra speed-up, including systems over fields of real numbers, on matrices from Model Checking Contest and Matrix Market.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.30
自引率
0.00%
发文量
27
期刊最新文献
Enhancing blockchain security through natural language processing and real-time monitoring Verification of cryptocurrency consensus protocols: reenterable colored Petri net model design Security and dependability analysis of blockchain systems in partially synchronous networks with Byzantine faults Fundamental data structures for matrix-free finite elements on hybrid tetrahedral grids Blocking aware offline survivable path provisioning of connection requests in elastic optical networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1