{"title":"烟草业分批生产中生产中断问题的多阶段属性抽样模型","authors":"Damla Yüksel, Y. Kazançoğlu, P. Sarma","doi":"10.1108/ijqrm-03-2021-0078","DOIUrl":null,"url":null,"abstract":"PurposeThis paper aims to create a new decision-making procedure that uses “Lot-by-Lot Acceptance Sampling Plan by Attributes” methodology in the production processes when any production interruption is observed in tobacco industry, which is a significant example of batch production.Design/methodology/approachBased on the fish bone diagram, the reasons of the production interruptions are categorized, then Lot-by-Lot Acceptance Sampling Plan by Attributes is studied to overcome the reasons of the production interruptions. Furthermore, managerial aspects of decision making are not ignored and hence, acceptance sampling models are determined by an Analytical Hierarchy Process (AHP) among the alternative acceptance sampling models.FindingsA three-phased acceptance sampling model is generated for determination of the reasons of production interruptions. Hence, the necessary actions are provided according to the results of the proposed acceptance sampling model. Initially, 729 alternative acceptance sampling models are found and 38 of them are chosen by relaxation. Then, five acceptance sampling models are determined by AHP.Practical implicationsThe current experience dependent decision mechanism is suggested to be replaced by the proposed acceptance sampling model which is based on both statistical and managerial decision-making procedure.Originality/valueAcceptance sampling plans are considered as a decision-making procedure for various cases in production processes. However, to the best of our knowledge Lot-by-Lot Acceptance Sampling Plan by Attributes has not been considered as a decision-making procedure for batch production when any production interruption is investigated.","PeriodicalId":14193,"journal":{"name":"International Journal of Quality & Reliability Management","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2021-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A multiphase acceptance sampling model by attributes to investigate the production interruptions in batch production within tobacco industry\",\"authors\":\"Damla Yüksel, Y. Kazançoğlu, P. Sarma\",\"doi\":\"10.1108/ijqrm-03-2021-0078\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"PurposeThis paper aims to create a new decision-making procedure that uses “Lot-by-Lot Acceptance Sampling Plan by Attributes” methodology in the production processes when any production interruption is observed in tobacco industry, which is a significant example of batch production.Design/methodology/approachBased on the fish bone diagram, the reasons of the production interruptions are categorized, then Lot-by-Lot Acceptance Sampling Plan by Attributes is studied to overcome the reasons of the production interruptions. Furthermore, managerial aspects of decision making are not ignored and hence, acceptance sampling models are determined by an Analytical Hierarchy Process (AHP) among the alternative acceptance sampling models.FindingsA three-phased acceptance sampling model is generated for determination of the reasons of production interruptions. Hence, the necessary actions are provided according to the results of the proposed acceptance sampling model. Initially, 729 alternative acceptance sampling models are found and 38 of them are chosen by relaxation. Then, five acceptance sampling models are determined by AHP.Practical implicationsThe current experience dependent decision mechanism is suggested to be replaced by the proposed acceptance sampling model which is based on both statistical and managerial decision-making procedure.Originality/valueAcceptance sampling plans are considered as a decision-making procedure for various cases in production processes. However, to the best of our knowledge Lot-by-Lot Acceptance Sampling Plan by Attributes has not been considered as a decision-making procedure for batch production when any production interruption is investigated.\",\"PeriodicalId\":14193,\"journal\":{\"name\":\"International Journal of Quality & Reliability Management\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2021-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Quality & Reliability Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1108/ijqrm-03-2021-0078\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MANAGEMENT\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Quality & Reliability Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/ijqrm-03-2021-0078","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MANAGEMENT","Score":null,"Total":0}
A multiphase acceptance sampling model by attributes to investigate the production interruptions in batch production within tobacco industry
PurposeThis paper aims to create a new decision-making procedure that uses “Lot-by-Lot Acceptance Sampling Plan by Attributes” methodology in the production processes when any production interruption is observed in tobacco industry, which is a significant example of batch production.Design/methodology/approachBased on the fish bone diagram, the reasons of the production interruptions are categorized, then Lot-by-Lot Acceptance Sampling Plan by Attributes is studied to overcome the reasons of the production interruptions. Furthermore, managerial aspects of decision making are not ignored and hence, acceptance sampling models are determined by an Analytical Hierarchy Process (AHP) among the alternative acceptance sampling models.FindingsA three-phased acceptance sampling model is generated for determination of the reasons of production interruptions. Hence, the necessary actions are provided according to the results of the proposed acceptance sampling model. Initially, 729 alternative acceptance sampling models are found and 38 of them are chosen by relaxation. Then, five acceptance sampling models are determined by AHP.Practical implicationsThe current experience dependent decision mechanism is suggested to be replaced by the proposed acceptance sampling model which is based on both statistical and managerial decision-making procedure.Originality/valueAcceptance sampling plans are considered as a decision-making procedure for various cases in production processes. However, to the best of our knowledge Lot-by-Lot Acceptance Sampling Plan by Attributes has not been considered as a decision-making procedure for batch production when any production interruption is investigated.
期刊介绍:
In today''s competitive business and industrial environment, it is essential to have an academic journal offering the most current theoretical knowledge on quality and reliability to ensure that top management is fully conversant with new thinking, techniques and developments in the field. The International Journal of Quality & Reliability Management (IJQRM) deals with all aspects of business improvements and with all aspects of manufacturing and services, from the training of (senior) managers, to innovations in organising and processing to raise standards of product and service quality. It is this unique blend of theoretical knowledge and managerial relevance that makes IJQRM a valuable resource for managers striving for higher standards.Coverage includes: -Reliability, availability & maintenance -Gauging, calibration & measurement -Life cycle costing & sustainability -Reliability Management of Systems -Service Quality -Green Marketing -Product liability -Product testing techniques & systems -Quality function deployment -Reliability & quality education & training -Productivity improvement -Performance improvement -(Regulatory) standards for quality & Quality Awards -Statistical process control -System modelling -Teamwork -Quality data & datamining