数学化,而非测量:对史蒂文斯测量量表的批判

M. Thomas
{"title":"数学化,而非测量:对史蒂文斯测量量表的批判","authors":"M. Thomas","doi":"10.2139/SSRN.2412765","DOIUrl":null,"url":null,"abstract":"Stevens redefined measurement as “the assignment of numerals to objects and events according to a rule.” Using this definition, he defined four scales of measurement (nominal, ordinal, interval, and ratio) and set out criteria for the appropriate statistical tests to be used with each. Stevens’ paper has been influential in statistics for the social sciences, but it is not grounded in either science or mathematics and confuses measurement with labeling and mathematization. Mathematization using set theory obviates the need for Stevens’ ad hoc framework.","PeriodicalId":90602,"journal":{"name":"Journal of methods and measurement in the social sciences","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Mathematization, Not Measurement: A Critique of Stevens’ Scales of Measurement\",\"authors\":\"M. Thomas\",\"doi\":\"10.2139/SSRN.2412765\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Stevens redefined measurement as “the assignment of numerals to objects and events according to a rule.” Using this definition, he defined four scales of measurement (nominal, ordinal, interval, and ratio) and set out criteria for the appropriate statistical tests to be used with each. Stevens’ paper has been influential in statistics for the social sciences, but it is not grounded in either science or mathematics and confuses measurement with labeling and mathematization. Mathematization using set theory obviates the need for Stevens’ ad hoc framework.\",\"PeriodicalId\":90602,\"journal\":{\"name\":\"Journal of methods and measurement in the social sciences\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of methods and measurement in the social sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/SSRN.2412765\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of methods and measurement in the social sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/SSRN.2412765","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

史蒂文斯将测量重新定义为“根据规则将数字分配给对象和事件”。利用这一定义,他定义了四种测量尺度(标称、序数、区间和比率),并为每种尺度使用的适当统计测试制定了标准。史蒂文斯的论文在社会科学统计学领域具有影响力,但它既没有科学基础,也没有数学基础,将测量与标记和数学化混为一谈。使用集合论的数学化消除了对Stevens特设框架的需要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Mathematization, Not Measurement: A Critique of Stevens’ Scales of Measurement
Stevens redefined measurement as “the assignment of numerals to objects and events according to a rule.” Using this definition, he defined four scales of measurement (nominal, ordinal, interval, and ratio) and set out criteria for the appropriate statistical tests to be used with each. Stevens’ paper has been influential in statistics for the social sciences, but it is not grounded in either science or mathematics and confuses measurement with labeling and mathematization. Mathematization using set theory obviates the need for Stevens’ ad hoc framework.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
26 weeks
期刊最新文献
Invitation for COVID-19 Submissions Machine Learning Method for High-Dimensional Education Data Comparing human coding to two natural language processing algorithms in aspirations of people affected by Duchenne Muscular Dystrophy The Modern Biased Information Test: Proposing alternatives for implicit measures Binary Classification: An Introductory Machine Learning Tutorial for Social Scientists
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1