{"title":"壳结构分析任务中的数学建模","authors":"A. Semenov","doi":"10.31534/engmod.2022.1.ri.03m","DOIUrl":null,"url":null,"abstract":"Studying shell structures while accounting for all necessary factors is a significantly nonlinear problem that requires serious mathematical tools and sufficient computing capacities. We propose an approach to solving such problems based on the following numerical methods. We propose the use of the Ritz method, the best parameter continuation method, and the Euler method under static loading. Under dynamic loading, the Kantorovich and the Rosenbrock methods are used. Software implementation was carried out using the Maple analytical software package. This paper also provides examples of simulating the deformation process in shell structures.","PeriodicalId":35748,"journal":{"name":"International Journal for Engineering Modelling","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mathematical Modeling in Shell Structure Analysis Tasks\",\"authors\":\"A. Semenov\",\"doi\":\"10.31534/engmod.2022.1.ri.03m\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Studying shell structures while accounting for all necessary factors is a significantly nonlinear problem that requires serious mathematical tools and sufficient computing capacities. We propose an approach to solving such problems based on the following numerical methods. We propose the use of the Ritz method, the best parameter continuation method, and the Euler method under static loading. Under dynamic loading, the Kantorovich and the Rosenbrock methods are used. Software implementation was carried out using the Maple analytical software package. This paper also provides examples of simulating the deformation process in shell structures.\",\"PeriodicalId\":35748,\"journal\":{\"name\":\"International Journal for Engineering Modelling\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal for Engineering Modelling\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31534/engmod.2022.1.ri.03m\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Engineering Modelling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31534/engmod.2022.1.ri.03m","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
Mathematical Modeling in Shell Structure Analysis Tasks
Studying shell structures while accounting for all necessary factors is a significantly nonlinear problem that requires serious mathematical tools and sufficient computing capacities. We propose an approach to solving such problems based on the following numerical methods. We propose the use of the Ritz method, the best parameter continuation method, and the Euler method under static loading. Under dynamic loading, the Kantorovich and the Rosenbrock methods are used. Software implementation was carried out using the Maple analytical software package. This paper also provides examples of simulating the deformation process in shell structures.
期刊介绍:
Engineering Modelling is a refereed international journal providing an up-to-date reference for the engineers and researchers engaged in computer aided analysis, design and research in the fields of computational mechanics, numerical methods, software develop-ment and engineering modelling.