{"title":"生物医用材料β钛合金的设计、加工和性能综述","authors":"S. Bahl, S. Suwas, K. Chatterjee","doi":"10.1080/09506608.2020.1735829","DOIUrl":null,"url":null,"abstract":"ABSTRACT Metastable β Ti alloys are widely projected for manufacturing the next generation of biomedical implants. The primary applications of these materials are envisaged in orthopedic, cardiovascular, and orthodontic biomedical devices. Development of an alloyprogresses through stages of compositional design, thermo-mechanical processing, and evaluation of material performance. This review tracks the progress at these three stages of alloy development particularly for use in orthopedic devices. The strategies to design low modulus compositions of β Ti alloys are critically reviewed. This is followed by the processing routes employed to achieve high strength to modulus ratio suitable for orthopedic applications. The effect of processing on performance metrics of these alloys vis-à-vis fatigue resistance, tribological response, corrosion behaviour, and biocompatibility are reviewed. In the end, targeted research areas for the future are highlighted along with encouraging strategies, with the aim to ensue clinical application of β Ti alloys.","PeriodicalId":14427,"journal":{"name":"International Materials Reviews","volume":"66 1","pages":"114 - 139"},"PeriodicalIF":16.8000,"publicationDate":"2020-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/09506608.2020.1735829","citationCount":"68","resultStr":"{\"title\":\"Comprehensive review on alloy design, processing, and performance of β Titanium alloys as biomedical materials\",\"authors\":\"S. Bahl, S. Suwas, K. Chatterjee\",\"doi\":\"10.1080/09506608.2020.1735829\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Metastable β Ti alloys are widely projected for manufacturing the next generation of biomedical implants. The primary applications of these materials are envisaged in orthopedic, cardiovascular, and orthodontic biomedical devices. Development of an alloyprogresses through stages of compositional design, thermo-mechanical processing, and evaluation of material performance. This review tracks the progress at these three stages of alloy development particularly for use in orthopedic devices. The strategies to design low modulus compositions of β Ti alloys are critically reviewed. This is followed by the processing routes employed to achieve high strength to modulus ratio suitable for orthopedic applications. The effect of processing on performance metrics of these alloys vis-à-vis fatigue resistance, tribological response, corrosion behaviour, and biocompatibility are reviewed. In the end, targeted research areas for the future are highlighted along with encouraging strategies, with the aim to ensue clinical application of β Ti alloys.\",\"PeriodicalId\":14427,\"journal\":{\"name\":\"International Materials Reviews\",\"volume\":\"66 1\",\"pages\":\"114 - 139\"},\"PeriodicalIF\":16.8000,\"publicationDate\":\"2020-03-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/09506608.2020.1735829\",\"citationCount\":\"68\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Materials Reviews\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1080/09506608.2020.1735829\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Materials Reviews","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/09506608.2020.1735829","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Comprehensive review on alloy design, processing, and performance of β Titanium alloys as biomedical materials
ABSTRACT Metastable β Ti alloys are widely projected for manufacturing the next generation of biomedical implants. The primary applications of these materials are envisaged in orthopedic, cardiovascular, and orthodontic biomedical devices. Development of an alloyprogresses through stages of compositional design, thermo-mechanical processing, and evaluation of material performance. This review tracks the progress at these three stages of alloy development particularly for use in orthopedic devices. The strategies to design low modulus compositions of β Ti alloys are critically reviewed. This is followed by the processing routes employed to achieve high strength to modulus ratio suitable for orthopedic applications. The effect of processing on performance metrics of these alloys vis-à-vis fatigue resistance, tribological response, corrosion behaviour, and biocompatibility are reviewed. In the end, targeted research areas for the future are highlighted along with encouraging strategies, with the aim to ensue clinical application of β Ti alloys.
期刊介绍:
International Materials Reviews (IMR) is a comprehensive publication that provides in-depth coverage of the current state and advancements in various materials technologies. With contributions from internationally respected experts, IMR offers a thorough analysis of the subject matter. It undergoes rigorous evaluation by committees in the United States and United Kingdom for ensuring the highest quality of content.
Published by Sage on behalf of ASM International and the Institute of Materials, Minerals and Mining (UK), IMR is a valuable resource for professionals in the field. It is available online through Sage's platform, facilitating convenient access to its wealth of information.
Jointly produced by ASM International and the Institute of Materials, Minerals and Mining (UK), IMR focuses on technologies that impact industries dealing with metals, structural ceramics, composite materials, and electronic materials. Its coverage spans from practical applications to theoretical and practical aspects of material extraction, production, fabrication, properties, and behavior.