基于树的异构级联集成信用评分模型

IF 6.9 2区 经济学 Q1 ECONOMICS International Journal of Forecasting Pub Date : 2023-10-01 DOI:10.1016/j.ijforecast.2022.07.007
Wanan Liu , Hong Fan , Meng Xia
{"title":"基于树的异构级联集成信用评分模型","authors":"Wanan Liu ,&nbsp;Hong Fan ,&nbsp;Meng Xia","doi":"10.1016/j.ijforecast.2022.07.007","DOIUrl":null,"url":null,"abstract":"<div><p>Credit scoring is an important tool to guard against commercial risks for banks and lending companies and provides good conditions for the construction of individual personal credit. Ensemble algorithms have shown appealing progress for the improvement of credit scoring. In this study, to meet the challenge of large-scale credit scoring, we propose a heterogeneous deep forest model (Heter-DF), which is established based on considerations ranging from base learner selection, encouragement of the diversity of base learners, and ensemble strategies, for credit scoring. Heter-DF is designed as a scalable cascading framework that can increase its complexity with the scale of the credit dataset. Moreover, each level of Heter-DF is built by multiple heterogeneous tree-based ensembled base learners, avoiding the homogeneous prediction of the ensemble framework. In addition, a weighted voting mechanism is introduced to highlight important information and suppress irrelevant features, making Heter-DF a robust model for credit scoring. Experimental results on four credit scoring datasets and six evaluation metrics show that the cascading framework a good choice for the ensemble of tree-based base learners. A comparison among homogeneous ensembles and heterogeneous ensembles further demonstrates the effectiveness of Heter-DF. Experiments on different training sets indicate that Heter-DF is a scalable framework which not only deals with large-scale credit scoring but also satisfies the condition where small-scale credit scoring is desirable. Finally, based on the good interpretability of a tree-based structure, the global interpretation of Heter-DF is preliminarily explored.</p></div>","PeriodicalId":14061,"journal":{"name":"International Journal of Forecasting","volume":"39 4","pages":"Pages 1593-1614"},"PeriodicalIF":6.9000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Tree-based heterogeneous cascade ensemble model for credit scoring\",\"authors\":\"Wanan Liu ,&nbsp;Hong Fan ,&nbsp;Meng Xia\",\"doi\":\"10.1016/j.ijforecast.2022.07.007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Credit scoring is an important tool to guard against commercial risks for banks and lending companies and provides good conditions for the construction of individual personal credit. Ensemble algorithms have shown appealing progress for the improvement of credit scoring. In this study, to meet the challenge of large-scale credit scoring, we propose a heterogeneous deep forest model (Heter-DF), which is established based on considerations ranging from base learner selection, encouragement of the diversity of base learners, and ensemble strategies, for credit scoring. Heter-DF is designed as a scalable cascading framework that can increase its complexity with the scale of the credit dataset. Moreover, each level of Heter-DF is built by multiple heterogeneous tree-based ensembled base learners, avoiding the homogeneous prediction of the ensemble framework. In addition, a weighted voting mechanism is introduced to highlight important information and suppress irrelevant features, making Heter-DF a robust model for credit scoring. Experimental results on four credit scoring datasets and six evaluation metrics show that the cascading framework a good choice for the ensemble of tree-based base learners. A comparison among homogeneous ensembles and heterogeneous ensembles further demonstrates the effectiveness of Heter-DF. Experiments on different training sets indicate that Heter-DF is a scalable framework which not only deals with large-scale credit scoring but also satisfies the condition where small-scale credit scoring is desirable. Finally, based on the good interpretability of a tree-based structure, the global interpretation of Heter-DF is preliminarily explored.</p></div>\",\"PeriodicalId\":14061,\"journal\":{\"name\":\"International Journal of Forecasting\",\"volume\":\"39 4\",\"pages\":\"Pages 1593-1614\"},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Forecasting\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0169207022001054\",\"RegionNum\":2,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Forecasting","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169207022001054","RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 4

摘要

信用评分是银行和贷款公司防范商业风险的重要工具,为个人信用建设提供了良好的条件。集成算法在信用评分的改进方面取得了令人满意的进展。在本研究中,为了应对大规模信用评分的挑战,我们提出了一种异构深度森林模型(Heter-DF),该模型基于基础学习者选择、鼓励基础学习者多样性和集成策略等方面的考虑,用于信用评分。Heter-DF被设计为一个可扩展的级联框架,可以随着信用数据集的规模增加其复杂性。此外,Heter-DF的每一层由多个基于异构树的集成基学习器构建,避免了集成框架的同质预测。此外,引入加权投票机制来突出重要信息并抑制无关特征,使Heter-DF成为一个鲁棒的信用评分模型。在4个信用评分数据集和6个评价指标上的实验结果表明,级联框架是树基学习器集成的良好选择。通过对均匀集成和非均匀集成的比较,进一步证明了Heter-DF的有效性。在不同训练集上的实验表明,Heter-DF是一个可扩展的框架,既能处理大规模的信用评分,又能满足需要小规模信用评分的条件。最后,基于树型结构良好的可解释性,对Heter-DF的全局解释进行了初步探讨。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Tree-based heterogeneous cascade ensemble model for credit scoring

Credit scoring is an important tool to guard against commercial risks for banks and lending companies and provides good conditions for the construction of individual personal credit. Ensemble algorithms have shown appealing progress for the improvement of credit scoring. In this study, to meet the challenge of large-scale credit scoring, we propose a heterogeneous deep forest model (Heter-DF), which is established based on considerations ranging from base learner selection, encouragement of the diversity of base learners, and ensemble strategies, for credit scoring. Heter-DF is designed as a scalable cascading framework that can increase its complexity with the scale of the credit dataset. Moreover, each level of Heter-DF is built by multiple heterogeneous tree-based ensembled base learners, avoiding the homogeneous prediction of the ensemble framework. In addition, a weighted voting mechanism is introduced to highlight important information and suppress irrelevant features, making Heter-DF a robust model for credit scoring. Experimental results on four credit scoring datasets and six evaluation metrics show that the cascading framework a good choice for the ensemble of tree-based base learners. A comparison among homogeneous ensembles and heterogeneous ensembles further demonstrates the effectiveness of Heter-DF. Experiments on different training sets indicate that Heter-DF is a scalable framework which not only deals with large-scale credit scoring but also satisfies the condition where small-scale credit scoring is desirable. Finally, based on the good interpretability of a tree-based structure, the global interpretation of Heter-DF is preliminarily explored.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
17.10
自引率
11.40%
发文量
189
审稿时长
77 days
期刊介绍: The International Journal of Forecasting is a leading journal in its field that publishes high quality refereed papers. It aims to bridge the gap between theory and practice, making forecasting useful and relevant for decision and policy makers. The journal places strong emphasis on empirical studies, evaluation activities, implementation research, and improving the practice of forecasting. It welcomes various points of view and encourages debate to find solutions to field-related problems. The journal is the official publication of the International Institute of Forecasters (IIF) and is indexed in Sociological Abstracts, Journal of Economic Literature, Statistical Theory and Method Abstracts, INSPEC, Current Contents, UMI Data Courier, RePEc, Academic Journal Guide, CIS, IAOR, and Social Sciences Citation Index.
期刊最新文献
On memory-augmented gated recurrent unit network Editorial Board A framework for timely and accessible long-term forecasting of shale gas production based on time series pattern matching Editorial Board Locally tail-scale invariant scoring rules for evaluation of extreme value forecasts
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1