从GNSS和InSAR组合中检索对流层延迟的配置框架

Endrit Shehaj, K. Wilgan, O. Frey, A. Geiger
{"title":"从GNSS和InSAR组合中检索对流层延迟的配置框架","authors":"Endrit Shehaj, K. Wilgan, O. Frey, A. Geiger","doi":"10.1002/navi.398","DOIUrl":null,"url":null,"abstract":"High spatio-temporal variability of atmospheric water vapor affects microwave signals of Global Navigation Satellite Systems (GNSS) and Interferometric Synthetic Aperture Radar (InSAR). A better knowledge of the distribution of water vapor improves both GNSS- and InSAR-derived data products. In this work, we present a collocation framework to combine and retrieve zenith and (relative) slant tropospheric delays. GNSS and InSAR meteorological products are combined aiming at a better retrieval of the atmospheric water vapor. We investigate the combination approach with synthetic and real data acquired in the Alpine region of Switzerland. Based on a closed-loop validation with simulated delays, a few mm accuracy is achieved for the GNSS-InSAR combination in terms of retrieved ZTDs. Furthermore, when real delays are collocated, the combination results are more congruent with InSAR computed products. This research is a contribution to improve the spatio-temporal mapping of tropospheric delays by combining GNSS-derived and InSAR-derived delays.","PeriodicalId":30601,"journal":{"name":"Annual of Navigation","volume":"67 1","pages":"823-842"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/navi.398","citationCount":"6","resultStr":"{\"title\":\"A collocation framework to retrieve tropospheric delays from a combination of GNSS and InSAR\",\"authors\":\"Endrit Shehaj, K. Wilgan, O. Frey, A. Geiger\",\"doi\":\"10.1002/navi.398\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"High spatio-temporal variability of atmospheric water vapor affects microwave signals of Global Navigation Satellite Systems (GNSS) and Interferometric Synthetic Aperture Radar (InSAR). A better knowledge of the distribution of water vapor improves both GNSS- and InSAR-derived data products. In this work, we present a collocation framework to combine and retrieve zenith and (relative) slant tropospheric delays. GNSS and InSAR meteorological products are combined aiming at a better retrieval of the atmospheric water vapor. We investigate the combination approach with synthetic and real data acquired in the Alpine region of Switzerland. Based on a closed-loop validation with simulated delays, a few mm accuracy is achieved for the GNSS-InSAR combination in terms of retrieved ZTDs. Furthermore, when real delays are collocated, the combination results are more congruent with InSAR computed products. This research is a contribution to improve the spatio-temporal mapping of tropospheric delays by combining GNSS-derived and InSAR-derived delays.\",\"PeriodicalId\":30601,\"journal\":{\"name\":\"Annual of Navigation\",\"volume\":\"67 1\",\"pages\":\"823-842\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1002/navi.398\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual of Navigation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/navi.398\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual of Navigation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/navi.398","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

大气水汽的高时空变异性影响全球导航卫星系统(GNSS)和干涉合成孔径雷达(InSAR)的微波信号。更好地了解水蒸气的分布可以改进GNSS和InSAR衍生的数据产品。在这项工作中,我们提出了一个组合和检索天顶和(相对)倾斜对流层延迟的配置框架。GNSS和InSAR气象产品的结合旨在更好地检索大气水蒸气。我们研究了在瑞士阿尔卑斯地区获得的合成和真实数据的组合方法。基于具有模拟延迟的闭环验证,就检索到的ZTD而言,GNSS InSAR组合实现了几毫米的精度。此外,当实际延迟被并置时,组合结果与InSAR计算的乘积更加一致。这项研究通过结合GNSS衍生的延迟和InSAR衍生的延迟,为改进对流层延迟的时空映射做出了贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A collocation framework to retrieve tropospheric delays from a combination of GNSS and InSAR
High spatio-temporal variability of atmospheric water vapor affects microwave signals of Global Navigation Satellite Systems (GNSS) and Interferometric Synthetic Aperture Radar (InSAR). A better knowledge of the distribution of water vapor improves both GNSS- and InSAR-derived data products. In this work, we present a collocation framework to combine and retrieve zenith and (relative) slant tropospheric delays. GNSS and InSAR meteorological products are combined aiming at a better retrieval of the atmospheric water vapor. We investigate the combination approach with synthetic and real data acquired in the Alpine region of Switzerland. Based on a closed-loop validation with simulated delays, a few mm accuracy is achieved for the GNSS-InSAR combination in terms of retrieved ZTDs. Furthermore, when real delays are collocated, the combination results are more congruent with InSAR computed products. This research is a contribution to improve the spatio-temporal mapping of tropospheric delays by combining GNSS-derived and InSAR-derived delays.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
20 weeks
期刊最新文献
Case study of Bayesian RAIM algorithm integrated with Spatial Feature Constraint and Fault Detection and Exclusion algorithms for multi‐sensor positioning Overbounding the effect of uncertain Gauss‐Markov noise in Kalman filtering Enabling ambiguity resolution in CSRS‐PPP GNSS spoofing detection through spatial processing ION GNSS software‐defined radio metadata standard
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1