Zakaria Zemali, L. Cherroun, Nadji Hadroug, M. Nadour, A. Hafaifa
{"title":"基于卡尔曼滤波和Luenberger估计的故障诊断观测器:在俯仰系统故障执行器中的应用","authors":"Zakaria Zemali, L. Cherroun, Nadji Hadroug, M. Nadour, A. Hafaifa","doi":"10.29354/diag/161307","DOIUrl":null,"url":null,"abstract":"This paper aims to present a robust fault diagnosis structure-based observers for actuator faults in the pitch part system of the wind turbine benchmark. In this work, two linear estimators have been proposed and investigated: the Kalman filter and the Luenberger estimator for observing the output states of the pitch system in order to generate the appropriate residual between the measured positions of blades and the estimated values. An inference step as a decision block is employed to decide the existence of faults in the process, and to classify the detected faults using a predetermined threshold defined by upper and lower limits. All actuator faults in the pitch system of the horizontal wind turbine benchmark are studied and investigated. The obtained simulation results show the ability of the proposed diagnosis system to determine effectively the occurred faults in the pitch system. Estimation of the output variables is effectively realized in both situations: without and with the occurrence of faults in the studied process. A comparison between the two used observers is demonstrated.","PeriodicalId":52164,"journal":{"name":"Diagnostyka","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fault diagnosis-based observers using Kalman filters and Luenberger estimators: Application to the pitch system fault actuators\",\"authors\":\"Zakaria Zemali, L. Cherroun, Nadji Hadroug, M. Nadour, A. Hafaifa\",\"doi\":\"10.29354/diag/161307\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper aims to present a robust fault diagnosis structure-based observers for actuator faults in the pitch part system of the wind turbine benchmark. In this work, two linear estimators have been proposed and investigated: the Kalman filter and the Luenberger estimator for observing the output states of the pitch system in order to generate the appropriate residual between the measured positions of blades and the estimated values. An inference step as a decision block is employed to decide the existence of faults in the process, and to classify the detected faults using a predetermined threshold defined by upper and lower limits. All actuator faults in the pitch system of the horizontal wind turbine benchmark are studied and investigated. The obtained simulation results show the ability of the proposed diagnosis system to determine effectively the occurred faults in the pitch system. Estimation of the output variables is effectively realized in both situations: without and with the occurrence of faults in the studied process. A comparison between the two used observers is demonstrated.\",\"PeriodicalId\":52164,\"journal\":{\"name\":\"Diagnostyka\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Diagnostyka\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.29354/diag/161307\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diagnostyka","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29354/diag/161307","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
Fault diagnosis-based observers using Kalman filters and Luenberger estimators: Application to the pitch system fault actuators
This paper aims to present a robust fault diagnosis structure-based observers for actuator faults in the pitch part system of the wind turbine benchmark. In this work, two linear estimators have been proposed and investigated: the Kalman filter and the Luenberger estimator for observing the output states of the pitch system in order to generate the appropriate residual between the measured positions of blades and the estimated values. An inference step as a decision block is employed to decide the existence of faults in the process, and to classify the detected faults using a predetermined threshold defined by upper and lower limits. All actuator faults in the pitch system of the horizontal wind turbine benchmark are studied and investigated. The obtained simulation results show the ability of the proposed diagnosis system to determine effectively the occurred faults in the pitch system. Estimation of the output variables is effectively realized in both situations: without and with the occurrence of faults in the studied process. A comparison between the two used observers is demonstrated.
期刊介绍:
Diagnostyka – is a quarterly published by the Polish Society of Technical Diagnostics (PSTD). The journal “Diagnostyka” was established by the decision of the Presidium of Main Board of the Polish Society of Technical Diagnostics on August, 21st 2000 and replaced published since 1990 reference book of the PSTD named “Diagnosta”. In the years 2000-2003 there were issued annually two numbers of the journal, since 2004 “Diagnostyka” is issued as a quarterly. Research areas covered include: -theory of the technical diagnostics, -experimental diagnostic research of processes, objects and systems, -analytical, symptom and simulation models of technical objects, -algorithms, methods and devices for diagnosing, prognosis and genesis of condition of technical objects, -methods for detection, localization and identification of damages of technical objects, -artificial intelligence in diagnostics, neural nets, fuzzy systems, genetic algorithms, expert systems, -application of technical diagnostics, -diagnostic issues in mechanical and civil engineering, -medical and biological diagnostics with signal processing application, -structural health monitoring, -machines, -noise and vibration, -analysis of technical and civil systems.