并网应用的高增益改进z源升压变换器混合可再生能源系统

IF 0.3 Q4 ENERGY & FUELS Problemele Energeticii Regionale Pub Date : 2023-02-01 DOI:10.52254/1857-0070.2023.1-57.04
C. Sathish, M. Manikandan, I. Chidambaram
{"title":"并网应用的高增益改进z源升压变换器混合可再生能源系统","authors":"C. Sathish, M. Manikandan, I. Chidambaram","doi":"10.52254/1857-0070.2023.1-57.04","DOIUrl":null,"url":null,"abstract":"In a hybrid renewable system, a conventional boost converter produces more losses at the time of the energy conversion process due to this, the performance of the hybrid system is reduced total harmonic distortion is increased, and the hybrid microgrid outcome is reduced. The main objective of the work enhancing the low DC voltage produced by the PV panel, a high gain Boost converter is utilized. The objectives of the work were achieved by a High Gain Modified Z-source Boost converter along with Modified Particle Swarm Optimized- Proportional Integral (MPSO-PI) controller employed in the energy conversion stage at Grid. It reduced power conversion stages and decreases the losses compared to existing Hybrid Grid-connected systems. A new 13-bus system is developed in this work for regulating the output voltage in distribution networks. The significance of our work lies in the design of an efficient microgrid system for grid-tied applications. High Gain Modified Z-source Boost converter along with Modified Particle Swarm Optimized- Proportional Integral (MPSO-PI) controller is employed to boost the voltage obtained from the PV system. A battery converter along with a bidirectional battery is connected to the DC link, to store energy generated by Hybrid Renewable Energy System (HRES) in excess amounts. The obtained DC link voltage is transferred to Three Phase VSI for the conversion of DC to AC voltage. Effective harmonic reduction is attained with the aid of an LC filter coupled to Three Phase grid, and the PI controller connected to Voltage Source Inverter(VSI) supports achieving effective grid synchronization. The proposed work was tested with 13 bus system through MATLAB Simulink.","PeriodicalId":41974,"journal":{"name":"Problemele Energeticii Regionale","volume":" ","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hybrid Renewable Energy System with High Gain Modified Z-Source Boost Converter for Grid-Tied Applications\",\"authors\":\"C. Sathish, M. Manikandan, I. Chidambaram\",\"doi\":\"10.52254/1857-0070.2023.1-57.04\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In a hybrid renewable system, a conventional boost converter produces more losses at the time of the energy conversion process due to this, the performance of the hybrid system is reduced total harmonic distortion is increased, and the hybrid microgrid outcome is reduced. The main objective of the work enhancing the low DC voltage produced by the PV panel, a high gain Boost converter is utilized. The objectives of the work were achieved by a High Gain Modified Z-source Boost converter along with Modified Particle Swarm Optimized- Proportional Integral (MPSO-PI) controller employed in the energy conversion stage at Grid. It reduced power conversion stages and decreases the losses compared to existing Hybrid Grid-connected systems. A new 13-bus system is developed in this work for regulating the output voltage in distribution networks. The significance of our work lies in the design of an efficient microgrid system for grid-tied applications. High Gain Modified Z-source Boost converter along with Modified Particle Swarm Optimized- Proportional Integral (MPSO-PI) controller is employed to boost the voltage obtained from the PV system. A battery converter along with a bidirectional battery is connected to the DC link, to store energy generated by Hybrid Renewable Energy System (HRES) in excess amounts. The obtained DC link voltage is transferred to Three Phase VSI for the conversion of DC to AC voltage. Effective harmonic reduction is attained with the aid of an LC filter coupled to Three Phase grid, and the PI controller connected to Voltage Source Inverter(VSI) supports achieving effective grid synchronization. The proposed work was tested with 13 bus system through MATLAB Simulink.\",\"PeriodicalId\":41974,\"journal\":{\"name\":\"Problemele Energeticii Regionale\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2023-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Problemele Energeticii Regionale\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.52254/1857-0070.2023.1-57.04\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Problemele Energeticii Regionale","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52254/1857-0070.2023.1-57.04","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

在混合可再生系统中,传统的升压转换器在能量转换过程中会产生更多的损耗,因此混合系统的性能降低,总谐波失真增加,混合微电网的结果降低。工作的主要目的是提高光伏电池板产生的低直流电压,使用了高增益Boost转换器。本工作的目标是通过高增益改进的Z源Boost转换器以及在电网能量转换阶段使用的改进的粒子群优化比例积分(MPSO-PI)控制器来实现的。与现有的混合电网连接系统相比,它减少了功率转换阶段并降低了损耗。本文开发了一种新的13总线系统,用于调节配电网的输出电压。我们工作的意义在于为并网应用设计一个高效的微电网系统。采用高增益改进的Z源Boost变换器和改进的粒子群优化比例积分(MPSO-PI)控制器对光伏系统的电压进行升压。电池转换器和双向电池连接到直流链路,以存储混合可再生能源系统(HRES)产生的过量能量。将获得的DC链路电压传输到三相VSI,用于将DC电压转换为AC电压。通过耦合到三相电网的LC滤波器实现了有效的谐波抑制,并且连接到电压源逆变器(VSI)的PI控制器支持实现有效的电网同步。通过MATLAB Simulink在13总线系统上对所提出的工作进行了测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Hybrid Renewable Energy System with High Gain Modified Z-Source Boost Converter for Grid-Tied Applications
In a hybrid renewable system, a conventional boost converter produces more losses at the time of the energy conversion process due to this, the performance of the hybrid system is reduced total harmonic distortion is increased, and the hybrid microgrid outcome is reduced. The main objective of the work enhancing the low DC voltage produced by the PV panel, a high gain Boost converter is utilized. The objectives of the work were achieved by a High Gain Modified Z-source Boost converter along with Modified Particle Swarm Optimized- Proportional Integral (MPSO-PI) controller employed in the energy conversion stage at Grid. It reduced power conversion stages and decreases the losses compared to existing Hybrid Grid-connected systems. A new 13-bus system is developed in this work for regulating the output voltage in distribution networks. The significance of our work lies in the design of an efficient microgrid system for grid-tied applications. High Gain Modified Z-source Boost converter along with Modified Particle Swarm Optimized- Proportional Integral (MPSO-PI) controller is employed to boost the voltage obtained from the PV system. A battery converter along with a bidirectional battery is connected to the DC link, to store energy generated by Hybrid Renewable Energy System (HRES) in excess amounts. The obtained DC link voltage is transferred to Three Phase VSI for the conversion of DC to AC voltage. Effective harmonic reduction is attained with the aid of an LC filter coupled to Three Phase grid, and the PI controller connected to Voltage Source Inverter(VSI) supports achieving effective grid synchronization. The proposed work was tested with 13 bus system through MATLAB Simulink.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.70
自引率
33.30%
发文量
38
期刊最新文献
Reduction of Voltage Fluctuations in Electrical Networks Supplying Motors with a Rapidly Changing Load by Installing Longitudinal Compensation Batteries Intelligent System of Relay Protection of Electrical Network 6-10 kV with the Implementation of Automatic Correction of the Operation Set Point Energy-Efficient Modes of Dehydration of Pome Fruits during Microwave Treatment in Combination with Convection Congestion Management Using an Optimized Deep Convolution Neural Network in Deregulated Environment Study of the Efficiency of Heat-Supply Systems with Steam Turbine CHP Plants, Taking into Account Changes in the Temperature of the Delivery Water during Transportation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1