{"title":"学校里的数据科学项目:介于统计学和认知编程之间","authors":"Susanne Podworny, Sven Hüsing, Carsten Schulte","doi":"10.52041/serj.v21i2.46","DOIUrl":null,"url":null,"abstract":"Aspects of data science surround us in many contexts, for example regarding climate change, air pollution, and other environmental issues. To open the “data-science-black-box” for lower secondary school students we developed a data science project focussing on the analysis of self-collected environmental data. We embed this project in computer science education, which enables us to use a new knowledge-based programming approach for the data analysis within Jupyter Notebooks and the programming language Python. In this paper, we evaluate the second cycle of this project which took place in a ninth-grade computer science class. In particular, we present how the students coped with the professional tool of Jupyter Notebooks for doing statistical investigations and which insights they gained.","PeriodicalId":38581,"journal":{"name":"Statistics Education Research Journal","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A PLACE FOR A DATA SCIENCE PROJECT IN SCHOOL: BETWEEN STATISTICS AND EPISTEMIC PROGRAMMING\",\"authors\":\"Susanne Podworny, Sven Hüsing, Carsten Schulte\",\"doi\":\"10.52041/serj.v21i2.46\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aspects of data science surround us in many contexts, for example regarding climate change, air pollution, and other environmental issues. To open the “data-science-black-box” for lower secondary school students we developed a data science project focussing on the analysis of self-collected environmental data. We embed this project in computer science education, which enables us to use a new knowledge-based programming approach for the data analysis within Jupyter Notebooks and the programming language Python. In this paper, we evaluate the second cycle of this project which took place in a ninth-grade computer science class. In particular, we present how the students coped with the professional tool of Jupyter Notebooks for doing statistical investigations and which insights they gained.\",\"PeriodicalId\":38581,\"journal\":{\"name\":\"Statistics Education Research Journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistics Education Research Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.52041/serj.v21i2.46\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Social Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics Education Research Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52041/serj.v21i2.46","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Social Sciences","Score":null,"Total":0}
A PLACE FOR A DATA SCIENCE PROJECT IN SCHOOL: BETWEEN STATISTICS AND EPISTEMIC PROGRAMMING
Aspects of data science surround us in many contexts, for example regarding climate change, air pollution, and other environmental issues. To open the “data-science-black-box” for lower secondary school students we developed a data science project focussing on the analysis of self-collected environmental data. We embed this project in computer science education, which enables us to use a new knowledge-based programming approach for the data analysis within Jupyter Notebooks and the programming language Python. In this paper, we evaluate the second cycle of this project which took place in a ninth-grade computer science class. In particular, we present how the students coped with the professional tool of Jupyter Notebooks for doing statistical investigations and which insights they gained.
期刊介绍:
SERJ is a peer-reviewed electronic journal of the International Association for Statistical Education (IASE) and the International Statistical Institute (ISI). SERJ is published twice a year and is free. SERJ aims to advance research-based knowledge that can help to improve the teaching, learning, and understanding of statistics or probability at all educational levels and in both formal (classroom-based) and informal (out-of-classroom) contexts. Such research may examine, for example, cognitive, motivational, attitudinal, curricular, teaching-related, technology-related, organizational, or societal factors and processes that are related to the development and understanding of stochastic knowledge. In addition, research may focus on how people use or apply statistical and probabilistic information and ideas, broadly viewed. The Journal encourages the submission of quality papers related to the above goals, such as reports of original research (both quantitative and qualitative), integrative and critical reviews of research literature, analyses of research-based theoretical and methodological models, and other types of papers described in full in the Guidelines for Authors. All papers are reviewed internally by an Associate Editor or Editor, and are blind-reviewed by at least two external referees. Contributions in English are recommended. Contributions in French and Spanish will also be considered. A submitted paper must not have been published before or be under consideration for publication elsewhere.