学校里的数据科学项目:介于统计学和认知编程之间

Q3 Social Sciences Statistics Education Research Journal Pub Date : 2022-07-04 DOI:10.52041/serj.v21i2.46
Susanne Podworny, Sven Hüsing, Carsten Schulte
{"title":"学校里的数据科学项目:介于统计学和认知编程之间","authors":"Susanne Podworny, Sven Hüsing, Carsten Schulte","doi":"10.52041/serj.v21i2.46","DOIUrl":null,"url":null,"abstract":"Aspects of data science surround us in many contexts, for example regarding climate change, air pollution, and other environmental issues. To open the “data-science-black-box” for lower secondary school students we developed a data science project focussing on the analysis of self-collected environmental data. We embed this project in computer science education, which enables us to use a new knowledge-based programming approach for the data analysis within Jupyter Notebooks and the programming language Python. In this paper, we evaluate the second cycle of this project which took place in a ninth-grade computer science class. In particular, we present how the students coped with the professional tool of Jupyter Notebooks for doing statistical investigations and which insights they gained.","PeriodicalId":38581,"journal":{"name":"Statistics Education Research Journal","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A PLACE FOR A DATA SCIENCE PROJECT IN SCHOOL: BETWEEN STATISTICS AND EPISTEMIC PROGRAMMING\",\"authors\":\"Susanne Podworny, Sven Hüsing, Carsten Schulte\",\"doi\":\"10.52041/serj.v21i2.46\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aspects of data science surround us in many contexts, for example regarding climate change, air pollution, and other environmental issues. To open the “data-science-black-box” for lower secondary school students we developed a data science project focussing on the analysis of self-collected environmental data. We embed this project in computer science education, which enables us to use a new knowledge-based programming approach for the data analysis within Jupyter Notebooks and the programming language Python. In this paper, we evaluate the second cycle of this project which took place in a ninth-grade computer science class. In particular, we present how the students coped with the professional tool of Jupyter Notebooks for doing statistical investigations and which insights they gained.\",\"PeriodicalId\":38581,\"journal\":{\"name\":\"Statistics Education Research Journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistics Education Research Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.52041/serj.v21i2.46\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Social Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics Education Research Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52041/serj.v21i2.46","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 2

摘要

数据科学的各个方面在许多情况下围绕着我们,例如气候变化、空气污染和其他环境问题。为了为初中生打开“数据科学黑匣子”,我们开发了一个数据科学项目,重点分析自己收集的环境数据。我们将该项目嵌入计算机科学教育中,使我们能够在Jupyter Notebooks和编程语言Python中使用新的基于知识的编程方法进行数据分析。在本文中,我们评估了这个项目的第二个周期,它发生在九年级的计算机科学课上。特别是,我们介绍了学生们如何使用Jupyter Notebooks的专业工具进行统计调查,以及他们获得了哪些见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A PLACE FOR A DATA SCIENCE PROJECT IN SCHOOL: BETWEEN STATISTICS AND EPISTEMIC PROGRAMMING
Aspects of data science surround us in many contexts, for example regarding climate change, air pollution, and other environmental issues. To open the “data-science-black-box” for lower secondary school students we developed a data science project focussing on the analysis of self-collected environmental data. We embed this project in computer science education, which enables us to use a new knowledge-based programming approach for the data analysis within Jupyter Notebooks and the programming language Python. In this paper, we evaluate the second cycle of this project which took place in a ninth-grade computer science class. In particular, we present how the students coped with the professional tool of Jupyter Notebooks for doing statistical investigations and which insights they gained.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Statistics Education Research Journal
Statistics Education Research Journal Social Sciences-Education
CiteScore
1.30
自引率
0.00%
发文量
46
期刊介绍: SERJ is a peer-reviewed electronic journal of the International Association for Statistical Education (IASE) and the International Statistical Institute (ISI). SERJ is published twice a year and is free. SERJ aims to advance research-based knowledge that can help to improve the teaching, learning, and understanding of statistics or probability at all educational levels and in both formal (classroom-based) and informal (out-of-classroom) contexts. Such research may examine, for example, cognitive, motivational, attitudinal, curricular, teaching-related, technology-related, organizational, or societal factors and processes that are related to the development and understanding of stochastic knowledge. In addition, research may focus on how people use or apply statistical and probabilistic information and ideas, broadly viewed. The Journal encourages the submission of quality papers related to the above goals, such as reports of original research (both quantitative and qualitative), integrative and critical reviews of research literature, analyses of research-based theoretical and methodological models, and other types of papers described in full in the Guidelines for Authors. All papers are reviewed internally by an Associate Editor or Editor, and are blind-reviewed by at least two external referees. Contributions in English are recommended. Contributions in French and Spanish will also be considered. A submitted paper must not have been published before or be under consideration for publication elsewhere.
期刊最新文献
TEACHING AND LEARNING TO CONSTRUCT DATA-BASED DECISION TREES USING DATA CARDS AS THE FIRST INTRODUCTION TO MACHINE LEARNING IN MIDDLE SCHOOL EXAMINING THE ROLE OF CONTEXT IN STATISTICAL LITERACY OUTCOMES USING AN ISOMORPHIC ASSESSMENT INSTRUMENT BRAZILIAN RESEARCH IN STATISTICS, PROBABILITY AND COMBINATORICS EDUCATION: A LOOK AT THESES RESOURCES AND TENSIONS IN STUDENT THINKING ABOUT STATISTICAL DESIGN OPPORTUNITIES TO LEARN MEAN, MEDIAN, AND MODE AFFORDED BY TEXTBOOK TASKS
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1