{"title":"基于运算集架构的fpga深度神经网络的超前编译","authors":"Burkhard Ringlein;Francois Abel;Dionysios Diamantopoulos;Beat Weiss;Christoph Hagleitner;Dietmar Fey","doi":"10.1109/LCA.2022.3227643","DOIUrl":null,"url":null,"abstract":"The slow-down of technology scaling combined with the exponential growth of modern machine learning and artificial intelligence models has created a demand for specialized accelerators, such as GPUs, ASICs, and field-programmable gate arrays (FPGAs). FPGAs can be reconfigured and have the potential to outperform other accelerators, while also being more energy-efficient, but are cumbersome to use with today's fractured landscape of tool flows. We propose the concept of an operation set architecture to overcome the current incompatibilities and hurdles in using DNN-to-FPGA compilers by combining existing specialized frameworks into one organic compiler that also allows the efficient and automatic re-use of existing community tools. Furthermore, we demonstrate that mixing different existing frameworks can increase the efficiency by more than an order of magnitude.","PeriodicalId":51248,"journal":{"name":"IEEE Computer Architecture Letters","volume":"22 1","pages":"9-12"},"PeriodicalIF":1.4000,"publicationDate":"2022-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Advancing Compilation of DNNs for FPGAs Using Operation Set Architectures\",\"authors\":\"Burkhard Ringlein;Francois Abel;Dionysios Diamantopoulos;Beat Weiss;Christoph Hagleitner;Dietmar Fey\",\"doi\":\"10.1109/LCA.2022.3227643\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The slow-down of technology scaling combined with the exponential growth of modern machine learning and artificial intelligence models has created a demand for specialized accelerators, such as GPUs, ASICs, and field-programmable gate arrays (FPGAs). FPGAs can be reconfigured and have the potential to outperform other accelerators, while also being more energy-efficient, but are cumbersome to use with today's fractured landscape of tool flows. We propose the concept of an operation set architecture to overcome the current incompatibilities and hurdles in using DNN-to-FPGA compilers by combining existing specialized frameworks into one organic compiler that also allows the efficient and automatic re-use of existing community tools. Furthermore, we demonstrate that mixing different existing frameworks can increase the efficiency by more than an order of magnitude.\",\"PeriodicalId\":51248,\"journal\":{\"name\":\"IEEE Computer Architecture Letters\",\"volume\":\"22 1\",\"pages\":\"9-12\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2022-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Computer Architecture Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/9984183/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Computer Architecture Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/9984183/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
Advancing Compilation of DNNs for FPGAs Using Operation Set Architectures
The slow-down of technology scaling combined with the exponential growth of modern machine learning and artificial intelligence models has created a demand for specialized accelerators, such as GPUs, ASICs, and field-programmable gate arrays (FPGAs). FPGAs can be reconfigured and have the potential to outperform other accelerators, while also being more energy-efficient, but are cumbersome to use with today's fractured landscape of tool flows. We propose the concept of an operation set architecture to overcome the current incompatibilities and hurdles in using DNN-to-FPGA compilers by combining existing specialized frameworks into one organic compiler that also allows the efficient and automatic re-use of existing community tools. Furthermore, we demonstrate that mixing different existing frameworks can increase the efficiency by more than an order of magnitude.
期刊介绍:
IEEE Computer Architecture Letters is a rigorously peer-reviewed forum for publishing early, high-impact results in the areas of uni- and multiprocessor computer systems, computer architecture, microarchitecture, workload characterization, performance evaluation and simulation techniques, and power-aware computing. Submissions are welcomed on any topic in computer architecture, especially but not limited to: microprocessor and multiprocessor systems, microarchitecture and ILP processors, workload characterization, performance evaluation and simulation techniques, compiler-hardware and operating system-hardware interactions, interconnect architectures, memory and cache systems, power and thermal issues at the architecture level, I/O architectures and techniques, independent validation of previously published results, analysis of unsuccessful techniques, domain-specific processor architectures (e.g., embedded, graphics, network, etc.), real-time and high-availability architectures, reconfigurable systems.