大数据与大学:基于Twitter数据的大学生流动性分析

Joaquín Osorio Arjona, J. Palomares
{"title":"大数据与大学:基于Twitter数据的大学生流动性分析","authors":"Joaquín Osorio Arjona, J. Palomares","doi":"10.21138/gf.648","DOIUrl":null,"url":null,"abstract":"Este trabajo investiga la movilidad universitaria en el Area Metropolitana de Madrid a partir de datos geolocalizados de Twitter, aprovechando su alto uso por la poblacion joven. A partir de la identificacion de usuarios, sus campus y lugares de residencia, se estiman areas de influencia de las distintas universidades, y se combinan los datos obtenidos con otras fuentes como ficheros de tiempos de viaje o datos de nivel de renta para analizar la influencia del modo de transporte, el tipo de universidad, o el lugar de residencia en la movilidad universitaria. Mediante la elaboracion de un modelo gravitacional de Huff se comparan los resultados obtenidos en Twitter. Los resultados muestran que los estudiantes tienden a residir cerca del campus al que asisten, la importancia de la proximidad a las redes de transporte, y la tendencia de los estudiantes de universidades privadas a residir en las zonas con mayor nivel de renta.","PeriodicalId":53900,"journal":{"name":"Geofocus-Revista Internacional de Ciencia y TecnologIa de la InformaciOn GeogrAfica","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2019-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Big Data y universidades: análisis de movilidad de los estudiantes universitarios a partir de datos de Twitter\",\"authors\":\"Joaquín Osorio Arjona, J. Palomares\",\"doi\":\"10.21138/gf.648\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Este trabajo investiga la movilidad universitaria en el Area Metropolitana de Madrid a partir de datos geolocalizados de Twitter, aprovechando su alto uso por la poblacion joven. A partir de la identificacion de usuarios, sus campus y lugares de residencia, se estiman areas de influencia de las distintas universidades, y se combinan los datos obtenidos con otras fuentes como ficheros de tiempos de viaje o datos de nivel de renta para analizar la influencia del modo de transporte, el tipo de universidad, o el lugar de residencia en la movilidad universitaria. Mediante la elaboracion de un modelo gravitacional de Huff se comparan los resultados obtenidos en Twitter. Los resultados muestran que los estudiantes tienden a residir cerca del campus al que asisten, la importancia de la proximidad a las redes de transporte, y la tendencia de los estudiantes de universidades privadas a residir en las zonas con mayor nivel de renta.\",\"PeriodicalId\":53900,\"journal\":{\"name\":\"Geofocus-Revista Internacional de Ciencia y TecnologIa de la InformaciOn GeogrAfica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2019-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geofocus-Revista Internacional de Ciencia y TecnologIa de la InformaciOn GeogrAfica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21138/gf.648\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geofocus-Revista Internacional de Ciencia y TecnologIa de la InformaciOn GeogrAfica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21138/gf.648","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

摘要

这项工作利用推特的地理定位数据,利用年轻人对推特的大量使用,研究马德里大都市地区的大学流动性。通过识别用户、他们的校园和居住地,估计不同大学的影响范围,并将获得的数据与旅行时间文件或收入水平数据等其他来源结合起来,分析交通方式、大学类型或居住地对大学流动性的影响。通过建立引力Huff模型,比较了在推特上获得的结果。结果表明,学生倾向于居住在他们就读的校园附近,靠近交通网络的重要性,以及私立大学学生倾向于居住在收入最高的地区。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Big Data y universidades: análisis de movilidad de los estudiantes universitarios a partir de datos de Twitter
Este trabajo investiga la movilidad universitaria en el Area Metropolitana de Madrid a partir de datos geolocalizados de Twitter, aprovechando su alto uso por la poblacion joven. A partir de la identificacion de usuarios, sus campus y lugares de residencia, se estiman areas de influencia de las distintas universidades, y se combinan los datos obtenidos con otras fuentes como ficheros de tiempos de viaje o datos de nivel de renta para analizar la influencia del modo de transporte, el tipo de universidad, o el lugar de residencia en la movilidad universitaria. Mediante la elaboracion de un modelo gravitacional de Huff se comparan los resultados obtenidos en Twitter. Los resultados muestran que los estudiantes tienden a residir cerca del campus al que asisten, la importancia de la proximidad a las redes de transporte, y la tendencia de los estudiantes de universidades privadas a residir en las zonas con mayor nivel de renta.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.50
自引率
0.00%
发文量
8
审稿时长
12 weeks
期刊最新文献
Generación de cartografía a partir de imágenes captadas con dron de ala fija, asociada a proyectos hidráulicos fluviales Lessons of humility from the recent USA presidential election to big data Caracterización de la isla de calor urbana en el campus de la UAM por medio de teledetección Sitios candidatos para nuevos servicios médicos utilizando técnicas de evaluación multicriterio, en la Zona Metropolitana de Toluca, México Cambios del uso del suelo e impactos en la escorrentía potencial de la cuenca Chuviscar-Sacramento (Chihuahua, México)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1