全局反应机理速率常数自动选择的优化方法

IF 1.9 4区 工程技术 Q4 ENERGY & FUELS Combustion Theory and Modelling Pub Date : 2022-12-08 DOI:10.1080/13647830.2022.2153743
Aleksander D. Zakharov, R. Fursenko, S. Minaev
{"title":"全局反应机理速率常数自动选择的优化方法","authors":"Aleksander D. Zakharov, R. Fursenko, S. Minaev","doi":"10.1080/13647830.2022.2153743","DOIUrl":null,"url":null,"abstract":"Optimisation approach to automate selection of global reaction mechanisms rate constants is proposed and studied. The objective of optimisation is to find reaction rate constants minimising deviation of some flame characteristics (e.g. laminar burning velocity, ignition delay time, etc.) calculated by global mechanism from their reference values known from experiments or computed by detailed mechanisms. Examples of one, two and four step mechanisms optimisation with respect to laminar burning velocity and concentration distributions in counterflow diffusion flame are given. Computer codes implementing optimisation algorithm for these examples are also afforded and can be modified and used for reaction constants selection in various applications. Uniqueness of singlecriteria and multicriteria optimisation solutions is studied numerically by computations with different initial guesses and by direct evaluation of the objective functions. Particularly, it is found that for considered global mechanisms the minimum value of objective function is reached in some subdomain of the parametric space. This means that any values of rate parameters from this subdomain results in almost the same deviations of chosen flame characteristic from its reference value.","PeriodicalId":50665,"journal":{"name":"Combustion Theory and Modelling","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2022-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Optimisation method for automatic selection of rate constants of global reaction mechanisms\",\"authors\":\"Aleksander D. Zakharov, R. Fursenko, S. Minaev\",\"doi\":\"10.1080/13647830.2022.2153743\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Optimisation approach to automate selection of global reaction mechanisms rate constants is proposed and studied. The objective of optimisation is to find reaction rate constants minimising deviation of some flame characteristics (e.g. laminar burning velocity, ignition delay time, etc.) calculated by global mechanism from their reference values known from experiments or computed by detailed mechanisms. Examples of one, two and four step mechanisms optimisation with respect to laminar burning velocity and concentration distributions in counterflow diffusion flame are given. Computer codes implementing optimisation algorithm for these examples are also afforded and can be modified and used for reaction constants selection in various applications. Uniqueness of singlecriteria and multicriteria optimisation solutions is studied numerically by computations with different initial guesses and by direct evaluation of the objective functions. Particularly, it is found that for considered global mechanisms the minimum value of objective function is reached in some subdomain of the parametric space. This means that any values of rate parameters from this subdomain results in almost the same deviations of chosen flame characteristic from its reference value.\",\"PeriodicalId\":50665,\"journal\":{\"name\":\"Combustion Theory and Modelling\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2022-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Combustion Theory and Modelling\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/13647830.2022.2153743\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combustion Theory and Modelling","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/13647830.2022.2153743","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 2

摘要

提出并研究了自动选择全局反应机理速率常数的优化方法。优化的目的是找到反应速率常数,使全局机制计算的某些火焰特性(如层流燃烧速度、点火延迟时间等)与实验已知或详细机制计算的参考值之间的偏差最小化。给出了关于逆流扩散火焰中层流燃烧速度和浓度分布的一步、二步和四步机构优化的例子。还提供了实现这些实例的优化算法的计算机代码,并且可以对其进行修改并用于各种应用中的反应常数选择。通过不同初始猜测的计算和目标函数的直接评估,对单准则和多准则优化解的唯一性进行了数值研究。特别地,我们发现对于所考虑的全局机制,在参数空间的一些子域中达到了目标函数的最小值。这意味着,来自该子域的任何速率参数值都会导致所选火焰特性与其参考值的偏差几乎相同。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optimisation method for automatic selection of rate constants of global reaction mechanisms
Optimisation approach to automate selection of global reaction mechanisms rate constants is proposed and studied. The objective of optimisation is to find reaction rate constants minimising deviation of some flame characteristics (e.g. laminar burning velocity, ignition delay time, etc.) calculated by global mechanism from their reference values known from experiments or computed by detailed mechanisms. Examples of one, two and four step mechanisms optimisation with respect to laminar burning velocity and concentration distributions in counterflow diffusion flame are given. Computer codes implementing optimisation algorithm for these examples are also afforded and can be modified and used for reaction constants selection in various applications. Uniqueness of singlecriteria and multicriteria optimisation solutions is studied numerically by computations with different initial guesses and by direct evaluation of the objective functions. Particularly, it is found that for considered global mechanisms the minimum value of objective function is reached in some subdomain of the parametric space. This means that any values of rate parameters from this subdomain results in almost the same deviations of chosen flame characteristic from its reference value.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Combustion Theory and Modelling
Combustion Theory and Modelling 工程技术-工程:化工
CiteScore
3.00
自引率
7.70%
发文量
38
审稿时长
6 months
期刊介绍: Combustion Theory and Modelling is a leading international journal devoted to the application of mathematical modelling, numerical simulation and experimental techniques to the study of combustion. Articles can cover a wide range of topics, such as: premixed laminar flames, laminar diffusion flames, turbulent combustion, fires, chemical kinetics, pollutant formation, microgravity, materials synthesis, chemical vapour deposition, catalysis, droplet and spray combustion, detonation dynamics, thermal explosions, ignition, energetic materials and propellants, burners and engine combustion. A diverse spectrum of mathematical methods may also be used, including large scale numerical simulation, hybrid computational schemes, front tracking, adaptive mesh refinement, optimized parallel computation, asymptotic methods and singular perturbation techniques, bifurcation theory, optimization methods, dynamical systems theory, cellular automata and discrete methods and probabilistic and statistical methods. Experimental studies that employ intrusive or nonintrusive diagnostics and are published in the Journal should be closely related to theoretical issues, by highlighting fundamental theoretical questions or by providing a sound basis for comparison with theory.
期刊最新文献
LES of premixed jet flames subjected to extreme turbulence using flamelet-generated manifolds: a comparison of unstrained and strained flamelets Effect of ethanol enrichment and engine parameters on the performance of an HCCI engine fuelled with biodiesel/ethanol mixtures Determining the global activation energy of methane–air premixed flames Simulation of reaction initiation in powder compacting from the surface with composite formation in equivalent reaction cell Updated asymptotic structure of cool diffusion flames
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1