{"title":"受威胁的印度兰花卵形石斛根瘤菌感染根瘤菌动员“Moscatilin”增强植物防御素","authors":"Ipsita Pujari, Vidhu Sankar Babu","doi":"10.1007/s13205-022-03180-9","DOIUrl":null,"url":null,"abstract":"<p><p>The present study illustrates the transformation ability of two wild-type bacterial strains of <i>Rhizobium rhizogene</i>s (MTCC 532 and MTCC 2364) on the embryogenic callus and callus-derived plantlets of a threatened Indian orchid, <i>Dendrobium ovatum</i>. Co-culture of the bacterium with the explants gave marginal hairy root phenotype that failed to multiply in the culture medium. Some primary and secondary metabolites were subdued in infected explants. Moscatilin, the stilbenoid active principle in <i>D. ovatum,</i> was found below the detection limit. The presence of two metabolites viz., Laudanosine, a benzyltetrahydroisoquinoline alkaloid and Lyciumin B, a cyclic peptide, were detected exclusively in the infected explants. The subjugated amino acids and phenolics in the infected plantlets were routed to produce phytoanticipins, and phenanthrenes, strengthening the defence mechanism in infected tissues. This research implies that the plant's defence mechanism activation could have prevented the extensive hairy root formation in the explants, even though nodulations and phenotype transitions were witnessed. Moscatilin has a structural resemblance with Resveratrol, a phytoalexin that combats bacterial and fungal pathogens. The study favours the possibility of Moscatlin being a precursor for phenanthrene compounds, thereby serving as a 'phytoanticipin' during the infection phase.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s13205-022-03180-9.</p>","PeriodicalId":48765,"journal":{"name":"3 Biotech","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9035196/pdf/","citationCount":"0","resultStr":"{\"title\":\"<i>Rhizobium rhizogenes</i> infection in threatened Indian orchid <i>Dendrobium ovatum</i> mobilises 'Moscatilin' to enhance plant defensins.\",\"authors\":\"Ipsita Pujari, Vidhu Sankar Babu\",\"doi\":\"10.1007/s13205-022-03180-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The present study illustrates the transformation ability of two wild-type bacterial strains of <i>Rhizobium rhizogene</i>s (MTCC 532 and MTCC 2364) on the embryogenic callus and callus-derived plantlets of a threatened Indian orchid, <i>Dendrobium ovatum</i>. Co-culture of the bacterium with the explants gave marginal hairy root phenotype that failed to multiply in the culture medium. Some primary and secondary metabolites were subdued in infected explants. Moscatilin, the stilbenoid active principle in <i>D. ovatum,</i> was found below the detection limit. The presence of two metabolites viz., Laudanosine, a benzyltetrahydroisoquinoline alkaloid and Lyciumin B, a cyclic peptide, were detected exclusively in the infected explants. The subjugated amino acids and phenolics in the infected plantlets were routed to produce phytoanticipins, and phenanthrenes, strengthening the defence mechanism in infected tissues. This research implies that the plant's defence mechanism activation could have prevented the extensive hairy root formation in the explants, even though nodulations and phenotype transitions were witnessed. Moscatilin has a structural resemblance with Resveratrol, a phytoalexin that combats bacterial and fungal pathogens. The study favours the possibility of Moscatlin being a precursor for phenanthrene compounds, thereby serving as a 'phytoanticipin' during the infection phase.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s13205-022-03180-9.</p>\",\"PeriodicalId\":48765,\"journal\":{\"name\":\"3 Biotech\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2022-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9035196/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"3 Biotech\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s13205-022-03180-9\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/4/23 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"3 Biotech","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s13205-022-03180-9","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/4/23 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
Rhizobium rhizogenes infection in threatened Indian orchid Dendrobium ovatum mobilises 'Moscatilin' to enhance plant defensins.
The present study illustrates the transformation ability of two wild-type bacterial strains of Rhizobium rhizogenes (MTCC 532 and MTCC 2364) on the embryogenic callus and callus-derived plantlets of a threatened Indian orchid, Dendrobium ovatum. Co-culture of the bacterium with the explants gave marginal hairy root phenotype that failed to multiply in the culture medium. Some primary and secondary metabolites were subdued in infected explants. Moscatilin, the stilbenoid active principle in D. ovatum, was found below the detection limit. The presence of two metabolites viz., Laudanosine, a benzyltetrahydroisoquinoline alkaloid and Lyciumin B, a cyclic peptide, were detected exclusively in the infected explants. The subjugated amino acids and phenolics in the infected plantlets were routed to produce phytoanticipins, and phenanthrenes, strengthening the defence mechanism in infected tissues. This research implies that the plant's defence mechanism activation could have prevented the extensive hairy root formation in the explants, even though nodulations and phenotype transitions were witnessed. Moscatilin has a structural resemblance with Resveratrol, a phytoalexin that combats bacterial and fungal pathogens. The study favours the possibility of Moscatlin being a precursor for phenanthrene compounds, thereby serving as a 'phytoanticipin' during the infection phase.
Supplementary information: The online version contains supplementary material available at 10.1007/s13205-022-03180-9.
期刊介绍:
3 Biotech publishes the results of the latest research related to the study and application of biotechnology to:
- Medicine and Biomedical Sciences
- Agriculture
- The Environment
The focus on these three technology sectors recognizes that complete Biotechnology applications often require a combination of techniques. 3 Biotech not only presents the latest developments in biotechnology but also addresses the problems and benefits of integrating a variety of techniques for a particular application. 3 Biotech will appeal to scientists and engineers in both academia and industry focused on the safe and efficient application of Biotechnology to Medicine, Agriculture and the Environment.