Jongsu Oh, Jin-Ho Kim, Eun Kyo Jung, Jongsul Min, Hwarim Im, Yong-Sang Kim
{"title":"基于脉冲宽度调制的p型低温多晶硅薄膜晶体管微发光二极管像素电路在元件波动下的稳健性研究","authors":"Jongsu Oh, Jin-Ho Kim, Eun Kyo Jung, Jongsul Min, Hwarim Im, Yong-Sang Kim","doi":"10.1080/15980316.2022.2029778","DOIUrl":null,"url":null,"abstract":"In this study, we have investigated the operation robustness of a p-type low-temperature polycrystalline silicon (LTPS) thin-film transistor (TFT)-based micro light-emitting diode (µLED) pixel circuit adopting pulse width modulation (PWM) under circuit component fluctuations. The wavelength shift of µLEDs, depending on the current density, was suppressed by implementing PWM. The PWM pixel circuit controlled the emission time with constant µLED current in the simulated and measured results. In addition, the wavelength shift was suppressed below 0.48% within the 10-bit grayscale range. Furthermore, the component tolerance of the pixel circuit was investigated by simulating the error rate of µLED emission time with varying threshold voltage, mobility, subthreshold swing, and capacitance. The pixel circuit exhibited a robust operation with a maximum error rate of 4.0% under a component fluctuation of ±10%. Consequently, the µLED pixel circuit adopting PWM suppressed the wavelength shift of µLEDs and demonstrated robust circuit operation under component fluctuation.","PeriodicalId":16257,"journal":{"name":"Journal of Information Display","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2022-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Investigation on operation robustness of p-type low-temperature polycrystalline silicon thin-film transistor-based micro light-emitting diode pixel circuit using pulse width modulation under component fluctuation\",\"authors\":\"Jongsu Oh, Jin-Ho Kim, Eun Kyo Jung, Jongsul Min, Hwarim Im, Yong-Sang Kim\",\"doi\":\"10.1080/15980316.2022.2029778\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, we have investigated the operation robustness of a p-type low-temperature polycrystalline silicon (LTPS) thin-film transistor (TFT)-based micro light-emitting diode (µLED) pixel circuit adopting pulse width modulation (PWM) under circuit component fluctuations. The wavelength shift of µLEDs, depending on the current density, was suppressed by implementing PWM. The PWM pixel circuit controlled the emission time with constant µLED current in the simulated and measured results. In addition, the wavelength shift was suppressed below 0.48% within the 10-bit grayscale range. Furthermore, the component tolerance of the pixel circuit was investigated by simulating the error rate of µLED emission time with varying threshold voltage, mobility, subthreshold swing, and capacitance. The pixel circuit exhibited a robust operation with a maximum error rate of 4.0% under a component fluctuation of ±10%. Consequently, the µLED pixel circuit adopting PWM suppressed the wavelength shift of µLEDs and demonstrated robust circuit operation under component fluctuation.\",\"PeriodicalId\":16257,\"journal\":{\"name\":\"Journal of Information Display\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2022-02-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Information Display\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/15980316.2022.2029778\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Information Display","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/15980316.2022.2029778","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Investigation on operation robustness of p-type low-temperature polycrystalline silicon thin-film transistor-based micro light-emitting diode pixel circuit using pulse width modulation under component fluctuation
In this study, we have investigated the operation robustness of a p-type low-temperature polycrystalline silicon (LTPS) thin-film transistor (TFT)-based micro light-emitting diode (µLED) pixel circuit adopting pulse width modulation (PWM) under circuit component fluctuations. The wavelength shift of µLEDs, depending on the current density, was suppressed by implementing PWM. The PWM pixel circuit controlled the emission time with constant µLED current in the simulated and measured results. In addition, the wavelength shift was suppressed below 0.48% within the 10-bit grayscale range. Furthermore, the component tolerance of the pixel circuit was investigated by simulating the error rate of µLED emission time with varying threshold voltage, mobility, subthreshold swing, and capacitance. The pixel circuit exhibited a robust operation with a maximum error rate of 4.0% under a component fluctuation of ±10%. Consequently, the µLED pixel circuit adopting PWM suppressed the wavelength shift of µLEDs and demonstrated robust circuit operation under component fluctuation.