移动机器人传感器网络驱动运动改进的强化优化算法

IF 0.9 4区 工程技术 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC Elektronika Ir Elektrotechnika Pub Date : 2022-08-24 DOI:10.5755/j02.eie.30736
Suryaprakash Shanmugasundaram, Thirumoorthi Ponnusamy, Tamilarasu Viswanathan
{"title":"移动机器人传感器网络驱动运动改进的强化优化算法","authors":"Suryaprakash Shanmugasundaram, Thirumoorthi Ponnusamy, Tamilarasu Viswanathan","doi":"10.5755/j02.eie.30736","DOIUrl":null,"url":null,"abstract":"This paper proposed four optimization algorithms for mobile robot sensor networks that improve the kinematics drive motion in a reference map environment. The standard procedure followed in mobile robot sensor measurements considers a problem statement for relating the sensor measurements with a reference map. The initial path shows that the existing methods lack consideration of more sensor points without considering the boundary constraints and obstacles. The probabilistic path map can be rearranged according to the current location to improve the better drive motion, as well as to obey the fundamental kinematics equations. he obstacle crossing led to the development of new algorithms. Implementation of schemes is achieved in different map environments, and the accuracy of results outperforms conventional methods by 84.21 % to 96.94 %.","PeriodicalId":51031,"journal":{"name":"Elektronika Ir Elektrotechnika","volume":" ","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2022-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reinforcement Optimization Algorithm for Mobile Robot Sensor Networks Drive Motion Improvement\",\"authors\":\"Suryaprakash Shanmugasundaram, Thirumoorthi Ponnusamy, Tamilarasu Viswanathan\",\"doi\":\"10.5755/j02.eie.30736\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposed four optimization algorithms for mobile robot sensor networks that improve the kinematics drive motion in a reference map environment. The standard procedure followed in mobile robot sensor measurements considers a problem statement for relating the sensor measurements with a reference map. The initial path shows that the existing methods lack consideration of more sensor points without considering the boundary constraints and obstacles. The probabilistic path map can be rearranged according to the current location to improve the better drive motion, as well as to obey the fundamental kinematics equations. he obstacle crossing led to the development of new algorithms. Implementation of schemes is achieved in different map environments, and the accuracy of results outperforms conventional methods by 84.21 % to 96.94 %.\",\"PeriodicalId\":51031,\"journal\":{\"name\":\"Elektronika Ir Elektrotechnika\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2022-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Elektronika Ir Elektrotechnika\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.5755/j02.eie.30736\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Elektronika Ir Elektrotechnika","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.5755/j02.eie.30736","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

提出了移动机器人传感器网络的四种优化算法,以改善参考地图环境下移动机器人的运动学驱动运动。在移动机器人传感器测量中遵循的标准程序考虑了将传感器测量与参考地图联系起来的问题陈述。初始路径表明,现有方法没有考虑边界约束和障碍物,缺乏对更多传感器点的考虑。概率路径图可以根据当前位置重新排列,以改善更好的驱动运动,并服从基本运动学方程。跨越障碍导致了新算法的发展。在不同的地图环境下实现了方案的实现,结果的精度优于常规方法的84.21% ~ 96.94%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Reinforcement Optimization Algorithm for Mobile Robot Sensor Networks Drive Motion Improvement
This paper proposed four optimization algorithms for mobile robot sensor networks that improve the kinematics drive motion in a reference map environment. The standard procedure followed in mobile robot sensor measurements considers a problem statement for relating the sensor measurements with a reference map. The initial path shows that the existing methods lack consideration of more sensor points without considering the boundary constraints and obstacles. The probabilistic path map can be rearranged according to the current location to improve the better drive motion, as well as to obey the fundamental kinematics equations. he obstacle crossing led to the development of new algorithms. Implementation of schemes is achieved in different map environments, and the accuracy of results outperforms conventional methods by 84.21 % to 96.94 %.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Elektronika Ir Elektrotechnika
Elektronika Ir Elektrotechnika 工程技术-工程:电子与电气
CiteScore
2.40
自引率
7.70%
发文量
44
审稿时长
24 months
期刊介绍: The journal aims to attract original research papers on featuring practical developments in the field of electronics and electrical engineering. The journal seeks to publish research progress in the field of electronics and electrical engineering with an emphasis on the applied rather than the theoretical in as much detail as possible. The journal publishes regular papers dealing with the following areas, but not limited to: Electronics; Electronic Measurements; Signal Technology; Microelectronics; High Frequency Technology, Microwaves. Electrical Engineering; Renewable Energy; Automation, Robotics; Telecommunications Engineering.
期刊最新文献
Optimum Design of an 18-Pulse Phase Shifting Autotransformer Rectifier to Improve the Power Quality of Cascaded H-Bridge Motor Driver Classification of Resampled Pediatric Epilepsy EEG Data Using Artificial Neural Networks with Discrete Fourier Transforms Time-Based High-Pass, Low-Pass, Shelf, and Notch Filters Deep Learning Method for Power Side-Channel Analysis on Chip Leakages Design of a High-Performance Control Scheme for a Grid-Connected DFIG‐Based Wind Energy Conversion System Using Model Predictive Control and Hysteresis Model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1