迁移学习方法作为小数据集计算机视觉任务的一种新方法

IF 1.8 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Foundations of Computing and Decision Sciences Pub Date : 2020-09-01 DOI:10.2478/fcds-2020-0010
Andrzej Brodzicki, M. Piekarski, Dariusz Kucharski, J. Jaworek-Korjakowska, M. Gorgon
{"title":"迁移学习方法作为小数据集计算机视觉任务的一种新方法","authors":"Andrzej Brodzicki, M. Piekarski, Dariusz Kucharski, J. Jaworek-Korjakowska, M. Gorgon","doi":"10.2478/fcds-2020-0010","DOIUrl":null,"url":null,"abstract":"\n Deep learning methods, used in machine vision challenges, often face the problem of the amount and quality of data. To address this issue, we investigate the transfer learning method. In this study, we briefly describe the idea and introduce two main strategies of transfer learning. We also present the widely-used neural network models, that in recent years performed best in ImageNet classification challenges. Furthermore, we shortly describe three different experiments from computer vision field, that confirm the developed algorithms ability to classify images with overall accuracy 87.2-95%. Achieved numbers are state-of-the-art results in melanoma thickness prediction, anomaly detection and Clostridium di cile cytotoxicity classification problems.","PeriodicalId":42909,"journal":{"name":"Foundations of Computing and Decision Sciences","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Transfer Learning Methods as a New Approach in Computer Vision Tasks with Small Datasets\",\"authors\":\"Andrzej Brodzicki, M. Piekarski, Dariusz Kucharski, J. Jaworek-Korjakowska, M. Gorgon\",\"doi\":\"10.2478/fcds-2020-0010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Deep learning methods, used in machine vision challenges, often face the problem of the amount and quality of data. To address this issue, we investigate the transfer learning method. In this study, we briefly describe the idea and introduce two main strategies of transfer learning. We also present the widely-used neural network models, that in recent years performed best in ImageNet classification challenges. Furthermore, we shortly describe three different experiments from computer vision field, that confirm the developed algorithms ability to classify images with overall accuracy 87.2-95%. Achieved numbers are state-of-the-art results in melanoma thickness prediction, anomaly detection and Clostridium di cile cytotoxicity classification problems.\",\"PeriodicalId\":42909,\"journal\":{\"name\":\"Foundations of Computing and Decision Sciences\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2020-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Foundations of Computing and Decision Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/fcds-2020-0010\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foundations of Computing and Decision Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/fcds-2020-0010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 18

摘要

在机器视觉挑战中使用的深度学习方法经常面临数据量和质量的问题。为了解决这个问题,我们研究了迁移学习方法。在本研究中,我们简要地描述了迁移学习的概念,并介绍了两种主要的策略。我们还介绍了近年来在ImageNet分类挑战中表现最好的广泛使用的神经网络模型。此外,我们简要描述了计算机视觉领域的三个不同实验,这些实验证实了所开发的算法对图像进行分类的能力,总体准确率为87.2-95%。所获得的数字是黑色素瘤厚度预测、异常检测和梭状芽孢杆菌细胞毒性分类问题方面的最新结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Transfer Learning Methods as a New Approach in Computer Vision Tasks with Small Datasets
Deep learning methods, used in machine vision challenges, often face the problem of the amount and quality of data. To address this issue, we investigate the transfer learning method. In this study, we briefly describe the idea and introduce two main strategies of transfer learning. We also present the widely-used neural network models, that in recent years performed best in ImageNet classification challenges. Furthermore, we shortly describe three different experiments from computer vision field, that confirm the developed algorithms ability to classify images with overall accuracy 87.2-95%. Achieved numbers are state-of-the-art results in melanoma thickness prediction, anomaly detection and Clostridium di cile cytotoxicity classification problems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Foundations of Computing and Decision Sciences
Foundations of Computing and Decision Sciences COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-
CiteScore
2.20
自引率
9.10%
发文量
16
审稿时长
29 weeks
期刊最新文献
A DNA Algorithm for Calculating the Maximum Flow of a Network Traceability of Architectural Design Decisions and Software Artifacts: A Systematic Mapping Study Traveling salesman problem parallelization by solving clustered subproblems Towards automated recommendations for drunk driving penalties in Poland - a case study analysis in selected court Designing a Tri-Objective, Sustainable, Closed-Loop, and Multi-Echelon Supply Chain During the COVID-19 and Lockdowns
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1