{"title":"柔性附件航天器比例导数加速度控制器设计","authors":"Anirudh Agarwal, G. Vukovich","doi":"10.1504/IJSPACESE.2019.10018483","DOIUrl":null,"url":null,"abstract":"A design methodology for certain third order systems is demonstrated using the root locus method, and extended and applied to a simple SISO model of a single axis of a flexible spacecraft with sensor and actuator dynamics included. The controller, including derivative and acceleration feedback, is tuned for the flexible spacecraft system to improve its steady state and transient performance. A numerical example then demonstrates the features of the controller.","PeriodicalId":41578,"journal":{"name":"International Journal of Space Science and Engineering","volume":null,"pages":null},"PeriodicalIF":0.2000,"publicationDate":"2019-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Proportional-derivative-acceleration controller design for spacecraft with flexible appendages\",\"authors\":\"Anirudh Agarwal, G. Vukovich\",\"doi\":\"10.1504/IJSPACESE.2019.10018483\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A design methodology for certain third order systems is demonstrated using the root locus method, and extended and applied to a simple SISO model of a single axis of a flexible spacecraft with sensor and actuator dynamics included. The controller, including derivative and acceleration feedback, is tuned for the flexible spacecraft system to improve its steady state and transient performance. A numerical example then demonstrates the features of the controller.\",\"PeriodicalId\":41578,\"journal\":{\"name\":\"International Journal of Space Science and Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.2000,\"publicationDate\":\"2019-01-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Space Science and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/IJSPACESE.2019.10018483\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Space Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJSPACESE.2019.10018483","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Proportional-derivative-acceleration controller design for spacecraft with flexible appendages
A design methodology for certain third order systems is demonstrated using the root locus method, and extended and applied to a simple SISO model of a single axis of a flexible spacecraft with sensor and actuator dynamics included. The controller, including derivative and acceleration feedback, is tuned for the flexible spacecraft system to improve its steady state and transient performance. A numerical example then demonstrates the features of the controller.