{"title":"低质量数据下物联网异常检测的机器学习","authors":"Shangbin Han, Qianhong Wu, Yang Yang","doi":"10.1177/15501329221133765","DOIUrl":null,"url":null,"abstract":"With the popularization of Internet of things, its network security has aroused widespread concern. Anomaly detection is one of the important technologies to protect network security. To meet the needs of automatic and intelligent detection, supervised machine learning is widely used in anomaly detection. However, the existing schemes ignore the problem of data quality, which leads to the unsatisfactory detection effect in practice. Therefore, practitioners may not know which algorithm to choose due to the lack of review and evaluation of anomaly detection methods under low-quality data. To address this problem, we give a detailed review and evaluation of six supervised anomaly detection methods, as well as release the core code of feature extractor for pcap format traffic traces and anomaly detection methods for reuse. We evaluate the methods on two public datasets (one is a simulated network dataset and the other is a real Internet of things dataset). We believe that our work and insights will help practitioners quickly understand and develop anomaly detection schemes for Internet of things and can provide reference for future research.","PeriodicalId":50327,"journal":{"name":"International Journal of Distributed Sensor Networks","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Machine learning for Internet of things anomaly detection under low-quality data\",\"authors\":\"Shangbin Han, Qianhong Wu, Yang Yang\",\"doi\":\"10.1177/15501329221133765\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the popularization of Internet of things, its network security has aroused widespread concern. Anomaly detection is one of the important technologies to protect network security. To meet the needs of automatic and intelligent detection, supervised machine learning is widely used in anomaly detection. However, the existing schemes ignore the problem of data quality, which leads to the unsatisfactory detection effect in practice. Therefore, practitioners may not know which algorithm to choose due to the lack of review and evaluation of anomaly detection methods under low-quality data. To address this problem, we give a detailed review and evaluation of six supervised anomaly detection methods, as well as release the core code of feature extractor for pcap format traffic traces and anomaly detection methods for reuse. We evaluate the methods on two public datasets (one is a simulated network dataset and the other is a real Internet of things dataset). We believe that our work and insights will help practitioners quickly understand and develop anomaly detection schemes for Internet of things and can provide reference for future research.\",\"PeriodicalId\":50327,\"journal\":{\"name\":\"International Journal of Distributed Sensor Networks\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2022-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Distributed Sensor Networks\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1177/15501329221133765\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Distributed Sensor Networks","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1177/15501329221133765","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Machine learning for Internet of things anomaly detection under low-quality data
With the popularization of Internet of things, its network security has aroused widespread concern. Anomaly detection is one of the important technologies to protect network security. To meet the needs of automatic and intelligent detection, supervised machine learning is widely used in anomaly detection. However, the existing schemes ignore the problem of data quality, which leads to the unsatisfactory detection effect in practice. Therefore, practitioners may not know which algorithm to choose due to the lack of review and evaluation of anomaly detection methods under low-quality data. To address this problem, we give a detailed review and evaluation of six supervised anomaly detection methods, as well as release the core code of feature extractor for pcap format traffic traces and anomaly detection methods for reuse. We evaluate the methods on two public datasets (one is a simulated network dataset and the other is a real Internet of things dataset). We believe that our work and insights will help practitioners quickly understand and develop anomaly detection schemes for Internet of things and can provide reference for future research.
期刊介绍:
International Journal of Distributed Sensor Networks (IJDSN) is a JCR ranked, peer-reviewed, open access journal that focuses on applied research and applications of sensor networks. The goal of this journal is to provide a forum for the publication of important research contributions in developing high performance computing solutions to problems arising from the complexities of these sensor network systems. Articles highlight advances in uses of sensor network systems for solving computational tasks in manufacturing, engineering and environmental systems.