采用平滑过渡自回归模型对线性假设进行综合检验

IF 0.8 4区 经济学 Q3 ECONOMICS Econometric Reviews Pub Date : 2022-07-21 DOI:10.1080/07474938.2022.2091713
Dakyung Seong, J. Cho, T. Teräsvirta
{"title":"采用平滑过渡自回归模型对线性假设进行综合检验","authors":"Dakyung Seong, J. Cho, T. Teräsvirta","doi":"10.1080/07474938.2022.2091713","DOIUrl":null,"url":null,"abstract":"Abstract This article examines the null limit distribution of the quasi-likelihood ratio (QLR) statistic for testing linearity condition against the smooth transition autoregressive (STAR) model. We explicitly show that the QLR test statistic weakly converges to a functional of a multivariate Gaussian process under the null of linearity, which is done by resolving the issue of identification problem arises in two different ways under the null. In contrast with the Lagrange multiplier test that is widely employed for testing the linearity condition, the proposed QLR statistic has an omnibus power, and thus, it complements the existing testing procedure. We show the empirical relevance of our test by testing the neglected nonlinearity of the US fiscal multipliers and growth rates of US unemployment. These empirical examples demonstrate that the QLR test is useful for detecting the nonlinear structure among economic variables.","PeriodicalId":11438,"journal":{"name":"Econometric Reviews","volume":"41 1","pages":"966 - 984"},"PeriodicalIF":0.8000,"publicationDate":"2022-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comprehensively testing linearity hypothesis using the smooth transition autoregressive model\",\"authors\":\"Dakyung Seong, J. Cho, T. Teräsvirta\",\"doi\":\"10.1080/07474938.2022.2091713\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This article examines the null limit distribution of the quasi-likelihood ratio (QLR) statistic for testing linearity condition against the smooth transition autoregressive (STAR) model. We explicitly show that the QLR test statistic weakly converges to a functional of a multivariate Gaussian process under the null of linearity, which is done by resolving the issue of identification problem arises in two different ways under the null. In contrast with the Lagrange multiplier test that is widely employed for testing the linearity condition, the proposed QLR statistic has an omnibus power, and thus, it complements the existing testing procedure. We show the empirical relevance of our test by testing the neglected nonlinearity of the US fiscal multipliers and growth rates of US unemployment. These empirical examples demonstrate that the QLR test is useful for detecting the nonlinear structure among economic variables.\",\"PeriodicalId\":11438,\"journal\":{\"name\":\"Econometric Reviews\",\"volume\":\"41 1\",\"pages\":\"966 - 984\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2022-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Econometric Reviews\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://doi.org/10.1080/07474938.2022.2091713\",\"RegionNum\":4,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometric Reviews","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1080/07474938.2022.2091713","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要本文研究了平滑过渡自回归(STAR)模型检验线性条件的准似然比(QLR)统计量的零极限分布。我们明确地证明了QLR检验统计量在零线性下弱收敛于多元高斯过程的泛函,这是通过解决零线性下两种不同方式产生的识别问题来实现的。与广泛用于检验线性条件的拉格朗日乘数检验相比,所提出的QLR统计量具有综合能力,因此,它补充了现有的检验程序。我们通过检验被忽视的美国财政乘数和美国失业率增长率的非线性来证明我们的检验的经验相关性。这些实例表明,QLR检验对于检测经济变量之间的非线性结构是有用的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Comprehensively testing linearity hypothesis using the smooth transition autoregressive model
Abstract This article examines the null limit distribution of the quasi-likelihood ratio (QLR) statistic for testing linearity condition against the smooth transition autoregressive (STAR) model. We explicitly show that the QLR test statistic weakly converges to a functional of a multivariate Gaussian process under the null of linearity, which is done by resolving the issue of identification problem arises in two different ways under the null. In contrast with the Lagrange multiplier test that is widely employed for testing the linearity condition, the proposed QLR statistic has an omnibus power, and thus, it complements the existing testing procedure. We show the empirical relevance of our test by testing the neglected nonlinearity of the US fiscal multipliers and growth rates of US unemployment. These empirical examples demonstrate that the QLR test is useful for detecting the nonlinear structure among economic variables.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Econometric Reviews
Econometric Reviews 管理科学-数学跨学科应用
CiteScore
1.70
自引率
0.00%
发文量
27
审稿时长
>12 weeks
期刊介绍: Econometric Reviews is widely regarded as one of the top 5 core journals in econometrics. It probes the limits of econometric knowledge, featuring regular, state-of-the-art single blind refereed articles and book reviews. ER has been consistently the leader and innovator in its acclaimed retrospective and critical surveys and interchanges on current or developing topics. Special issues of the journal are developed by a world-renowned editorial board. These bring together leading experts from econometrics and beyond. Reviews of books and software are also within the scope of the journal. Its content is expressly intended to reach beyond econometrics and advanced empirical economics, to statistics and other social sciences.
期刊最新文献
Estimation of random functions proxying for unobservables Bootstrap inference on a factor model based average treatment effects estimator Using machine learning for efficient flexible regression adjustment in economic experiments Lag order selection for long-run variance estimation in econometrics Selecting the number of factors in approximate factor models using group variable regularization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1