{"title":"超高维分位数回归模型的正向变量选择","authors":"Toshio Honda, Chien-Tong Lin","doi":"10.1007/s10463-022-00849-z","DOIUrl":null,"url":null,"abstract":"<div><p>We propose forward variable selection procedures with a stopping rule for feature screening in ultra-high-dimensional quantile regression models. For such very large models, penalized methods do not work and some preliminary feature screening is necessary. We demonstrate the desirable theoretical properties of our forward procedures by taking care of uniformity w.r.t. subsets of covariates properly. The necessity of such uniformity is often overlooked in the literature. Our stopping rule suitably incorporates the model size at each stage. We also present the results of simulation studies and a real data application to show their good finite sample performances.</p></div>","PeriodicalId":55511,"journal":{"name":"Annals of the Institute of Statistical Mathematics","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2022-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10463-022-00849-z.pdf","citationCount":"1","resultStr":"{\"title\":\"Forward variable selection for ultra-high dimensional quantile regression models\",\"authors\":\"Toshio Honda, Chien-Tong Lin\",\"doi\":\"10.1007/s10463-022-00849-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We propose forward variable selection procedures with a stopping rule for feature screening in ultra-high-dimensional quantile regression models. For such very large models, penalized methods do not work and some preliminary feature screening is necessary. We demonstrate the desirable theoretical properties of our forward procedures by taking care of uniformity w.r.t. subsets of covariates properly. The necessity of such uniformity is often overlooked in the literature. Our stopping rule suitably incorporates the model size at each stage. We also present the results of simulation studies and a real data application to show their good finite sample performances.</p></div>\",\"PeriodicalId\":55511,\"journal\":{\"name\":\"Annals of the Institute of Statistical Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2022-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10463-022-00849-z.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of the Institute of Statistical Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10463-022-00849-z\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of the Institute of Statistical Mathematics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10463-022-00849-z","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Forward variable selection for ultra-high dimensional quantile regression models
We propose forward variable selection procedures with a stopping rule for feature screening in ultra-high-dimensional quantile regression models. For such very large models, penalized methods do not work and some preliminary feature screening is necessary. We demonstrate the desirable theoretical properties of our forward procedures by taking care of uniformity w.r.t. subsets of covariates properly. The necessity of such uniformity is often overlooked in the literature. Our stopping rule suitably incorporates the model size at each stage. We also present the results of simulation studies and a real data application to show their good finite sample performances.
期刊介绍:
Annals of the Institute of Statistical Mathematics (AISM) aims to provide a forum for open communication among statisticians, and to contribute to the advancement of statistics as a science to enable humans to handle information in order to cope with uncertainties. It publishes high-quality papers that shed new light on the theoretical, computational and/or methodological aspects of statistical science. Emphasis is placed on (a) development of new methodologies motivated by real data, (b) development of unifying theories, and (c) analysis and improvement of existing methodologies and theories.