J. Brust, O. Burdakov, Jennifer B. Erway, Roummel F. Marcia
{"title":"算法xxx:SC-SR1:MATLAB有限内存软件SR1信赖域方法","authors":"J. Brust, O. Burdakov, Jennifer B. Erway, Roummel F. Marcia","doi":"10.1145/3550269","DOIUrl":null,"url":null,"abstract":"We present a MATLAB implementation of the symmetric rank-one (SC-SR1) method that solves trust-region subproblems when a limited-memory symmetric rank-one (L-SR1) matrix is used in place of the true Hessian matrix, which can be used for large-scale optimization. The method takes advantage of two shape-changing norms [7, 9] to decompose the trust-region subproblem into two separate problems. Using one of the proposed norms, the resulting subproblems have closed-form solutions. Meanwhile, using the other proposed norm, one of the resulting subproblems has a closed-form solution while the other is easily solvable using techniques that exploit the structure of L-SR1 matrices. Numerical results suggest that the SC-SR1 method is able to solve trust-region subproblems to high accuracy even in the so-called “hard case”. When integrated into a trust-region algorithm, extensive numerical experiments suggest that the proposed algorithms perform well, when compared with widely used solvers, such as truncated CG.","PeriodicalId":50935,"journal":{"name":"ACM Transactions on Mathematical Software","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2022-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Algorithm xxx: SC-SR1: MATLAB Software for Limited-Memory SR1 Trust-Region Methods\",\"authors\":\"J. Brust, O. Burdakov, Jennifer B. Erway, Roummel F. Marcia\",\"doi\":\"10.1145/3550269\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a MATLAB implementation of the symmetric rank-one (SC-SR1) method that solves trust-region subproblems when a limited-memory symmetric rank-one (L-SR1) matrix is used in place of the true Hessian matrix, which can be used for large-scale optimization. The method takes advantage of two shape-changing norms [7, 9] to decompose the trust-region subproblem into two separate problems. Using one of the proposed norms, the resulting subproblems have closed-form solutions. Meanwhile, using the other proposed norm, one of the resulting subproblems has a closed-form solution while the other is easily solvable using techniques that exploit the structure of L-SR1 matrices. Numerical results suggest that the SC-SR1 method is able to solve trust-region subproblems to high accuracy even in the so-called “hard case”. When integrated into a trust-region algorithm, extensive numerical experiments suggest that the proposed algorithms perform well, when compared with widely used solvers, such as truncated CG.\",\"PeriodicalId\":50935,\"journal\":{\"name\":\"ACM Transactions on Mathematical Software\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2022-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Mathematical Software\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3550269\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Mathematical Software","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3550269","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
Algorithm xxx: SC-SR1: MATLAB Software for Limited-Memory SR1 Trust-Region Methods
We present a MATLAB implementation of the symmetric rank-one (SC-SR1) method that solves trust-region subproblems when a limited-memory symmetric rank-one (L-SR1) matrix is used in place of the true Hessian matrix, which can be used for large-scale optimization. The method takes advantage of two shape-changing norms [7, 9] to decompose the trust-region subproblem into two separate problems. Using one of the proposed norms, the resulting subproblems have closed-form solutions. Meanwhile, using the other proposed norm, one of the resulting subproblems has a closed-form solution while the other is easily solvable using techniques that exploit the structure of L-SR1 matrices. Numerical results suggest that the SC-SR1 method is able to solve trust-region subproblems to high accuracy even in the so-called “hard case”. When integrated into a trust-region algorithm, extensive numerical experiments suggest that the proposed algorithms perform well, when compared with widely used solvers, such as truncated CG.
期刊介绍:
As a scientific journal, ACM Transactions on Mathematical Software (TOMS) documents the theoretical underpinnings of numeric, symbolic, algebraic, and geometric computing applications. It focuses on analysis and construction of algorithms and programs, and the interaction of programs and architecture. Algorithms documented in TOMS are available as the Collected Algorithms of the ACM at calgo.acm.org.