水热合成磷镁石和类托贝莫石晶体作为纤维状C-S-H晶种在胶凝材料中的技术和环境评价

IF 4.7 3区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY Journal of Sustainable Cement-Based Materials Pub Date : 2023-03-30 DOI:10.1080/21650373.2023.2185828
S. Nassiri, Ananya Markandeya, M. Haider, Antonio Valencia, M. Rangelov, Hui Li, Aaron Halsted, David Bollinger, J. McCloy
{"title":"水热合成磷镁石和类托贝莫石晶体作为纤维状C-S-H晶种在胶凝材料中的技术和环境评价","authors":"S. Nassiri, Ananya Markandeya, M. Haider, Antonio Valencia, M. Rangelov, Hui Li, Aaron Halsted, David Bollinger, J. McCloy","doi":"10.1080/21650373.2023.2185828","DOIUrl":null,"url":null,"abstract":"Abstract This study evaluates two calcium-silicate-hydrate (C-S-H) nanoseeds: tobermorite (TOB) and foshagite (FOS), for accelerating hydration and strength gain in cement systems. TOB and FOS seeding at 1.5%wt generated 7 and 3 times more heat of hydration than the control at hour four. In addition, 1.5%wt TOB and 1%wt FOS seeding increased 1- and 3-day compressive strength (fc ) by 40 and 30% and flexural strength (ff ) by 20 and 23%. Twenty-eight-day fc and ff increased by up 30 and 17% with 1.5%wt TOB. The contribution of C-S-H seeds to the total global warming potential of seeded mortars was 9–15% and down to 2–5% using recycled steam. After the improvements in 28-day fc were factored in, the carbon intensity index of seeded mortars was lower than the control by up to 20%. Based on these initial results, the studied hydrothermally synthesized C-S-H seeds appear sensible from the strength development and environmental stances.","PeriodicalId":48521,"journal":{"name":"Journal of Sustainable Cement-Based Materials","volume":"12 1","pages":"1181 - 1204"},"PeriodicalIF":4.7000,"publicationDate":"2023-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Technical and environmental assessment of hydrothermally synthesized foshagite and tobermorite-like crystals as fibrillar C-S-H seeds in cementitious materials\",\"authors\":\"S. Nassiri, Ananya Markandeya, M. Haider, Antonio Valencia, M. Rangelov, Hui Li, Aaron Halsted, David Bollinger, J. McCloy\",\"doi\":\"10.1080/21650373.2023.2185828\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This study evaluates two calcium-silicate-hydrate (C-S-H) nanoseeds: tobermorite (TOB) and foshagite (FOS), for accelerating hydration and strength gain in cement systems. TOB and FOS seeding at 1.5%wt generated 7 and 3 times more heat of hydration than the control at hour four. In addition, 1.5%wt TOB and 1%wt FOS seeding increased 1- and 3-day compressive strength (fc ) by 40 and 30% and flexural strength (ff ) by 20 and 23%. Twenty-eight-day fc and ff increased by up 30 and 17% with 1.5%wt TOB. The contribution of C-S-H seeds to the total global warming potential of seeded mortars was 9–15% and down to 2–5% using recycled steam. After the improvements in 28-day fc were factored in, the carbon intensity index of seeded mortars was lower than the control by up to 20%. Based on these initial results, the studied hydrothermally synthesized C-S-H seeds appear sensible from the strength development and environmental stances.\",\"PeriodicalId\":48521,\"journal\":{\"name\":\"Journal of Sustainable Cement-Based Materials\",\"volume\":\"12 1\",\"pages\":\"1181 - 1204\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2023-03-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Sustainable Cement-Based Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/21650373.2023.2185828\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sustainable Cement-Based Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/21650373.2023.2185828","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

摘要本研究评估了两种硅酸钙水合物(C-S-H)纳米针:托贝石(TOB)和磷沙石(FOS),用于加速水泥系统的水化和强度增加。1.5%重量的TOB和FOS接种在第4小时产生的水合热是对照的7倍和3倍。此外,1.5%重量的TOB和1%重量的FOS播种使1天和3天的抗压强度(fc)分别提高了40%和30%,弯曲强度(ff)分别提高20%和23%。28天的fc和ff分别增加了30%和17%,TOB增加了1.5%。C-S-H种子对种子砂浆的总全球变暖潜力的贡献为9-15%,使用回收蒸汽时降至2-5%。考虑到28天fc的改善后,接种砂浆的碳强度指数比对照低20%。基于这些初步结果,所研究的水热合成C-S-H种子从强度发展和环境状况来看是合理的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Technical and environmental assessment of hydrothermally synthesized foshagite and tobermorite-like crystals as fibrillar C-S-H seeds in cementitious materials
Abstract This study evaluates two calcium-silicate-hydrate (C-S-H) nanoseeds: tobermorite (TOB) and foshagite (FOS), for accelerating hydration and strength gain in cement systems. TOB and FOS seeding at 1.5%wt generated 7 and 3 times more heat of hydration than the control at hour four. In addition, 1.5%wt TOB and 1%wt FOS seeding increased 1- and 3-day compressive strength (fc ) by 40 and 30% and flexural strength (ff ) by 20 and 23%. Twenty-eight-day fc and ff increased by up 30 and 17% with 1.5%wt TOB. The contribution of C-S-H seeds to the total global warming potential of seeded mortars was 9–15% and down to 2–5% using recycled steam. After the improvements in 28-day fc were factored in, the carbon intensity index of seeded mortars was lower than the control by up to 20%. Based on these initial results, the studied hydrothermally synthesized C-S-H seeds appear sensible from the strength development and environmental stances.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.60
自引率
15.90%
发文量
71
期刊介绍: The Journal of Sustainable Cement-Based Materials aims to publish theoretical and applied researches on materials, products and structures that incorporate cement. The journal is a forum for discussion of research on manufacture, hydration and performance of cement-based materials; novel experimental techniques; the latest analytical and modelling methods; the examination and the diagnosis of real cement and concrete structures; and the potential for improved cement-based materials. The journal welcomes original research papers, major reviews, rapid communications and selected conference papers. The Journal of Sustainable Cement-Based Materials covers a wide range of topics within its subject category, including but are not limited to: • raw materials and manufacture of cement • mixing, rheology and hydration • admixtures • structural characteristics and performance of cement-based materials • characterisation techniques and modeling • use of fibre in cement based-materials • degradation and repair of cement-based materials • novel testing techniques and applications • waste management
期刊最新文献
Preparation of high flexural strength rankinite cement benefiting from formation of aragonite whisker during carbonation curing Hydration mechanism and mechanical properties of a developed low-carbon and lightweight strain-hardening cementitious composites Development and characterization of volume-stabilized grouts used for borehole heat exchangers Piezoresistive performance of self-sensing cement-based composites filled with multi-layer graphene Mechanical and microstructural properties of structural and non-structural lightweight foamed concrete with coal bottom ash as cement and sand replacement material
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1