Dao Zhao, Zhijie Zhou, P. Zhang, Yijun Zhang, Haibin Qin, Shan Gao
{"title":"基于证据推理规则的卫星锂离子电池放电终期预测","authors":"Dao Zhao, Zhijie Zhou, P. Zhang, Yijun Zhang, Haibin Qin, Shan Gao","doi":"10.1515/astro-2022-0031","DOIUrl":null,"url":null,"abstract":"Abstract To ensure the safety of the power supply for an in-orbit satellite, it is of great significance to accurately predict the end-of-discharge time of lithium-ion batteries for making a reasonable flight plan. Constrained by development time and experimental environment, it is usually difficult to obtain many full discharge voltage curves of satellite batteries from ground experiments as historical data. Because of insufficient data, the prediction accuracy of the single time series prediction method is low. To solve this problem, this paper takes the voltage of the discharge process as the time series and uses the evidential reasoning rule algorithm to fuse the outputs of three typical prediction models to improve the prediction accuracy. The result can be expressed as a form of belief degree distribution with the ability to express uncertainty. Using the NASA battery dataset, the effectiveness of the proposed method is verified, and the end-of-discharge of an in-orbit satellite battery is predicted by the telemetry data.","PeriodicalId":19514,"journal":{"name":"Open Astronomy","volume":"31 1","pages":"256 - 267"},"PeriodicalIF":0.5000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"End-of-discharge prediction for satellite lithium-ion battery based on evidential reasoning rule\",\"authors\":\"Dao Zhao, Zhijie Zhou, P. Zhang, Yijun Zhang, Haibin Qin, Shan Gao\",\"doi\":\"10.1515/astro-2022-0031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract To ensure the safety of the power supply for an in-orbit satellite, it is of great significance to accurately predict the end-of-discharge time of lithium-ion batteries for making a reasonable flight plan. Constrained by development time and experimental environment, it is usually difficult to obtain many full discharge voltage curves of satellite batteries from ground experiments as historical data. Because of insufficient data, the prediction accuracy of the single time series prediction method is low. To solve this problem, this paper takes the voltage of the discharge process as the time series and uses the evidential reasoning rule algorithm to fuse the outputs of three typical prediction models to improve the prediction accuracy. The result can be expressed as a form of belief degree distribution with the ability to express uncertainty. Using the NASA battery dataset, the effectiveness of the proposed method is verified, and the end-of-discharge of an in-orbit satellite battery is predicted by the telemetry data.\",\"PeriodicalId\":19514,\"journal\":{\"name\":\"Open Astronomy\",\"volume\":\"31 1\",\"pages\":\"256 - 267\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Open Astronomy\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1515/astro-2022-0031\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Astronomy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1515/astro-2022-0031","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
End-of-discharge prediction for satellite lithium-ion battery based on evidential reasoning rule
Abstract To ensure the safety of the power supply for an in-orbit satellite, it is of great significance to accurately predict the end-of-discharge time of lithium-ion batteries for making a reasonable flight plan. Constrained by development time and experimental environment, it is usually difficult to obtain many full discharge voltage curves of satellite batteries from ground experiments as historical data. Because of insufficient data, the prediction accuracy of the single time series prediction method is low. To solve this problem, this paper takes the voltage of the discharge process as the time series and uses the evidential reasoning rule algorithm to fuse the outputs of three typical prediction models to improve the prediction accuracy. The result can be expressed as a form of belief degree distribution with the ability to express uncertainty. Using the NASA battery dataset, the effectiveness of the proposed method is verified, and the end-of-discharge of an in-orbit satellite battery is predicted by the telemetry data.
Open AstronomyPhysics and Astronomy-Astronomy and Astrophysics
CiteScore
1.30
自引率
14.30%
发文量
37
审稿时长
16 weeks
期刊介绍:
The journal disseminates research in both observational and theoretical astronomy, astrophysics, solar physics, cosmology, galactic and extragalactic astronomy, high energy particles physics, planetary science, space science and astronomy-related astrobiology, presenting as well the surveys dedicated to astronomical history and education.