用界面流变学方法测定菊粉与不同蛋白质的最佳相互作用:与乳液活性和稳定性的关系

IF 1.6 4区 农林科学 International Journal of Food Engineering Pub Date : 2022-12-01 DOI:10.1515/ijfe-2022-0212
Duygu Aslan Türker, Meryem Göksel Saraç, M. Doğan
{"title":"用界面流变学方法测定菊粉与不同蛋白质的最佳相互作用:与乳液活性和稳定性的关系","authors":"Duygu Aslan Türker, Meryem Göksel Saraç, M. Doğan","doi":"10.1515/ijfe-2022-0212","DOIUrl":null,"url":null,"abstract":"Abstract This study aimed to develop functional emulsions with dietary fibre/proteins and to examine the role of interfacial rheological properties on the emulsion stability. Emulsions with inulin and various animal/vegetable proteins were prepared, and their emulsifying and interfacial rheological properties were appraised for their possible applications in stabilizing oil-in-water emulsions. Interfacial measurements including the frequency, time and strain sweep test were determined depending on the protein differences. The results revealed that the adsorption behaviour of proteins at the two interfaces was quite different. The apparent viscosity (η50) of the emulsions ranged between 0.006 and 0.037 Pa s. The highest interfacial viscosity (ηi) values at low shear rates were determined in the mixture of egg protein-inulin at the oil/water interface. In particular, the interfacial properties of egg protein were not similar to those of other proteins. This study indicated that interfacial rheological properties and emulsifying properties of the proteins were influenced by the presence of inulin which contributes to the existing body of knowledge on the preparation of the prebiotic emulsions with proteins.","PeriodicalId":13976,"journal":{"name":"International Journal of Food Engineering","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Determination of the best interaction of inulin with different proteins by using interfacial rheology: the relationship with the emulsion activity and stability in emulsion systems\",\"authors\":\"Duygu Aslan Türker, Meryem Göksel Saraç, M. Doğan\",\"doi\":\"10.1515/ijfe-2022-0212\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This study aimed to develop functional emulsions with dietary fibre/proteins and to examine the role of interfacial rheological properties on the emulsion stability. Emulsions with inulin and various animal/vegetable proteins were prepared, and their emulsifying and interfacial rheological properties were appraised for their possible applications in stabilizing oil-in-water emulsions. Interfacial measurements including the frequency, time and strain sweep test were determined depending on the protein differences. The results revealed that the adsorption behaviour of proteins at the two interfaces was quite different. The apparent viscosity (η50) of the emulsions ranged between 0.006 and 0.037 Pa s. The highest interfacial viscosity (ηi) values at low shear rates were determined in the mixture of egg protein-inulin at the oil/water interface. In particular, the interfacial properties of egg protein were not similar to those of other proteins. This study indicated that interfacial rheological properties and emulsifying properties of the proteins were influenced by the presence of inulin which contributes to the existing body of knowledge on the preparation of the prebiotic emulsions with proteins.\",\"PeriodicalId\":13976,\"journal\":{\"name\":\"International Journal of Food Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Food Engineering\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1515/ijfe-2022-0212\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Food Engineering","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1515/ijfe-2022-0212","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要本研究旨在制备含膳食纤维/蛋白质的功能性乳剂,并研究界面流变性能对乳剂稳定性的影响。以菊粉和多种动植物蛋白为原料制备了乳状液,并对其乳化和界面流变性能进行了评价,探讨了其在稳定水包油乳状液中的应用前景。界面测量包括频率、时间和菌株扫描测试,根据蛋白质的差异来确定。结果表明,蛋白质在两个界面上的吸附行为有很大的不同。乳状液的表观粘度(η50)在0.006 ~ 0.037 Pa s之间。低剪切速率下,蛋蛋白-菊粉混合物在油水界面处的界面粘度(ηi)值最高。特别是,鸡蛋蛋白的界面特性与其他蛋白质不同。该研究表明,菊粉的存在会影响蛋白质的界面流变性能和乳化性,这有助于现有的用蛋白质制备益生元乳剂的知识体系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Determination of the best interaction of inulin with different proteins by using interfacial rheology: the relationship with the emulsion activity and stability in emulsion systems
Abstract This study aimed to develop functional emulsions with dietary fibre/proteins and to examine the role of interfacial rheological properties on the emulsion stability. Emulsions with inulin and various animal/vegetable proteins were prepared, and their emulsifying and interfacial rheological properties were appraised for their possible applications in stabilizing oil-in-water emulsions. Interfacial measurements including the frequency, time and strain sweep test were determined depending on the protein differences. The results revealed that the adsorption behaviour of proteins at the two interfaces was quite different. The apparent viscosity (η50) of the emulsions ranged between 0.006 and 0.037 Pa s. The highest interfacial viscosity (ηi) values at low shear rates were determined in the mixture of egg protein-inulin at the oil/water interface. In particular, the interfacial properties of egg protein were not similar to those of other proteins. This study indicated that interfacial rheological properties and emulsifying properties of the proteins were influenced by the presence of inulin which contributes to the existing body of knowledge on the preparation of the prebiotic emulsions with proteins.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Food Engineering
International Journal of Food Engineering 农林科学-食品科技
CiteScore
3.20
自引率
0.00%
发文量
52
审稿时长
3.8 months
期刊介绍: International Journal of Food Engineering is devoted to engineering disciplines related to processing foods. The areas of interest include heat, mass transfer and fluid flow in food processing; food microstructure development and characterization; application of artificial intelligence in food engineering research and in industry; food biotechnology; and mathematical modeling and software development for food processing purposes. Authors and editors come from top engineering programs around the world: the U.S., Canada, the U.K., and Western Europe, but also South America, Asia, Africa, and the Middle East.
期刊最新文献
Exploration of eco-benign antifoulant in combating seafood-associated biofilms: an in-vitro study on impacts of myrobalan mediated FeNPs against biofilming SS-316 metal coupon Exploration of eco-benign antifoulant in combating seafood-associated biofilms: an in-vitro study on impacts of myrobalan mediated FeNPs against biofilming SS-316 metal coupon Investigating the spray drying damage mechanism of baijiu yeast with combined drying process and equipment Moisture distribution change and quality characteristics of ultrasound enhanced heat pump drying on carrot Impact of thermosonication treatment on passion fruit juice: ANN/GA optimization, predictive modelling for shelf life and quality changes during storage
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1