使用条件可视化的模型探索

IF 4.4 2区 数学 Q1 STATISTICS & PROBABILITY Wiley Interdisciplinary Reviews-Computational Statistics Pub Date : 2020-02-07 DOI:10.1002/wics.1503
C. Hurley
{"title":"使用条件可视化的模型探索","authors":"C. Hurley","doi":"10.1002/wics.1503","DOIUrl":null,"url":null,"abstract":"Ideally, statistical parametric model fitting is followed by various summary tables which show predictor contributions, visualizations which assess model assumptions and goodness of fit, and test statistics which compare models. In contrast, modern machine‐learning fits are usually black box in nature, offer high‐performing predictions but suffer from an interpretability deficit. We examine how the paradigm of conditional visualization can be used to address this, specifically to explain predictor contributions, assess goodness of fit, and compare multiple, competing fits. We compare visualizations from techniques including trellis, condvis, visreg, lime, partial dependence, and ice plots. Our examples use random forest fits, but all techniques presented are model agnostic.","PeriodicalId":47779,"journal":{"name":"Wiley Interdisciplinary Reviews-Computational Statistics","volume":" ","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2020-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/wics.1503","citationCount":"1","resultStr":"{\"title\":\"Model exploration using conditional visualization\",\"authors\":\"C. Hurley\",\"doi\":\"10.1002/wics.1503\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ideally, statistical parametric model fitting is followed by various summary tables which show predictor contributions, visualizations which assess model assumptions and goodness of fit, and test statistics which compare models. In contrast, modern machine‐learning fits are usually black box in nature, offer high‐performing predictions but suffer from an interpretability deficit. We examine how the paradigm of conditional visualization can be used to address this, specifically to explain predictor contributions, assess goodness of fit, and compare multiple, competing fits. We compare visualizations from techniques including trellis, condvis, visreg, lime, partial dependence, and ice plots. Our examples use random forest fits, but all techniques presented are model agnostic.\",\"PeriodicalId\":47779,\"journal\":{\"name\":\"Wiley Interdisciplinary Reviews-Computational Statistics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2020-02-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1002/wics.1503\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wiley Interdisciplinary Reviews-Computational Statistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1002/wics.1503\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wiley Interdisciplinary Reviews-Computational Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/wics.1503","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 1

摘要

理想情况下,统计参数模型拟合之后是各种汇总表,这些汇总表显示了预测因子的贡献,评估模型假设和拟合优度的可视化,以及比较模型的测试统计。相比之下,现代机器学习拟合通常本质上是黑盒,提供了高性能的预测,但存在可解释性缺陷。我们研究了如何使用条件可视化的范式来解决这一问题,特别是解释预测因子的贡献,评估拟合优度,并比较多个竞争拟合。我们比较了网格、condvis、visreg、石灰、部分依赖和冰图等技术的可视化效果。我们的示例使用随机森林拟合,但所提供的所有技术都与模型无关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Model exploration using conditional visualization
Ideally, statistical parametric model fitting is followed by various summary tables which show predictor contributions, visualizations which assess model assumptions and goodness of fit, and test statistics which compare models. In contrast, modern machine‐learning fits are usually black box in nature, offer high‐performing predictions but suffer from an interpretability deficit. We examine how the paradigm of conditional visualization can be used to address this, specifically to explain predictor contributions, assess goodness of fit, and compare multiple, competing fits. We compare visualizations from techniques including trellis, condvis, visreg, lime, partial dependence, and ice plots. Our examples use random forest fits, but all techniques presented are model agnostic.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.20
自引率
0.00%
发文量
31
期刊最新文献
Neuroimaging statistical approaches for determining neural correlates of Alzheimer's disease via positron emission tomography imaging. A spectrum of explainable and interpretable machine learning approaches for genomic studies Functional neuroimaging in the era of Big Data and Open Science: A modern overview Information criteria for model selection Data Integration in Causal Inference.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1