M. Formisano, M. D. De Sanctis, C. Federico, G. Magni, F. Altieri, E. Ammannito, S. De Angelis, M. Ferrari, A. Frigeri
{"title":"ExoMars 2022着陆点的缺氧平原地下热模拟","authors":"M. Formisano, M. D. De Sanctis, C. Federico, G. Magni, F. Altieri, E. Ammannito, S. De Angelis, M. Ferrari, A. Frigeri","doi":"10.1155/2021/9924571","DOIUrl":null,"url":null,"abstract":"Numerical simulations are required to thermophysically characterize Oxia Planum, the landing site of the mission ExoMars 2022. A drilling system is installed on the ExoMars rover, and it will be able to analyze down to 2 meters in the subsurface of Mars. The spectrometer Ma_MISS (Mars Multispectral Imager for Subsurface, Coradini and Da Pieve, 2001) will investigate the lateral wall of the borehole generated by the drill, providing hyperspectral images. It is not fully clear if water ice can be found in the subsurface at Oxia Planum. However, Ma_MISS has the capability to characterize and map the presence of possible ices, in particular water ice. We performed simulations of the subsurface temperatures by varying the thermal inertia, and we quantified the effects of self-heating. Moreover, we quantified the heat released by the drilling operations, by exploring different frictional coefficients and angular drill velocities, in order to evaluate the lifetime of possible water ice.","PeriodicalId":48962,"journal":{"name":"Advances in Astronomy","volume":" ","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Subsurface Thermal Modeling of Oxia Planum, Landing Site of ExoMars 2022\",\"authors\":\"M. Formisano, M. D. De Sanctis, C. Federico, G. Magni, F. Altieri, E. Ammannito, S. De Angelis, M. Ferrari, A. Frigeri\",\"doi\":\"10.1155/2021/9924571\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Numerical simulations are required to thermophysically characterize Oxia Planum, the landing site of the mission ExoMars 2022. A drilling system is installed on the ExoMars rover, and it will be able to analyze down to 2 meters in the subsurface of Mars. The spectrometer Ma_MISS (Mars Multispectral Imager for Subsurface, Coradini and Da Pieve, 2001) will investigate the lateral wall of the borehole generated by the drill, providing hyperspectral images. It is not fully clear if water ice can be found in the subsurface at Oxia Planum. However, Ma_MISS has the capability to characterize and map the presence of possible ices, in particular water ice. We performed simulations of the subsurface temperatures by varying the thermal inertia, and we quantified the effects of self-heating. Moreover, we quantified the heat released by the drilling operations, by exploring different frictional coefficients and angular drill velocities, in order to evaluate the lifetime of possible water ice.\",\"PeriodicalId\":48962,\"journal\":{\"name\":\"Advances in Astronomy\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2021-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Astronomy\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1155/2021/9924571\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Astronomy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1155/2021/9924571","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
Subsurface Thermal Modeling of Oxia Planum, Landing Site of ExoMars 2022
Numerical simulations are required to thermophysically characterize Oxia Planum, the landing site of the mission ExoMars 2022. A drilling system is installed on the ExoMars rover, and it will be able to analyze down to 2 meters in the subsurface of Mars. The spectrometer Ma_MISS (Mars Multispectral Imager for Subsurface, Coradini and Da Pieve, 2001) will investigate the lateral wall of the borehole generated by the drill, providing hyperspectral images. It is not fully clear if water ice can be found in the subsurface at Oxia Planum. However, Ma_MISS has the capability to characterize and map the presence of possible ices, in particular water ice. We performed simulations of the subsurface temperatures by varying the thermal inertia, and we quantified the effects of self-heating. Moreover, we quantified the heat released by the drilling operations, by exploring different frictional coefficients and angular drill velocities, in order to evaluate the lifetime of possible water ice.
期刊介绍:
Advances in Astronomy publishes articles in all areas of astronomy, astrophysics, and cosmology. The journal accepts both observational and theoretical investigations into celestial objects and the wider universe, as well as the reports of new methods and instrumentation for their study.