{"title":"观察性研究中治疗效果异质性的非参数检验","authors":"Maozhu Dai, Weining Shen, Hal S. Stern","doi":"10.1002/cjs.11728","DOIUrl":null,"url":null,"abstract":"<p>We consider the problem of testing for treatment effect heterogeneity in observational studies and propose a nonparametric test based on multisample <math>\n <semantics>\n <mrow>\n <mi>U</mi>\n </mrow>\n <annotation>$$ U $$</annotation>\n </semantics></math>-statistics. To account for potential confounders, we use reweighted data where the weights are determined by estimated propensity scores. The proposed method does not require any parametric assumptions on the outcomes and bypasses the need for modelling the treatment effect for each study subgroup. We establish the asymptotic normality for the test statistic and demonstrate its superior numerical performance over several competing approaches via simulation studies. Two real data applications are discussed: an employment programme evaluation study and a mental health study of China's one-child policy.</p>","PeriodicalId":55281,"journal":{"name":"Canadian Journal of Statistics-Revue Canadienne De Statistique","volume":"51 2","pages":"531-558"},"PeriodicalIF":0.8000,"publicationDate":"2022-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nonparametric tests for treatment effect heterogeneity in observational studies\",\"authors\":\"Maozhu Dai, Weining Shen, Hal S. Stern\",\"doi\":\"10.1002/cjs.11728\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We consider the problem of testing for treatment effect heterogeneity in observational studies and propose a nonparametric test based on multisample <math>\\n <semantics>\\n <mrow>\\n <mi>U</mi>\\n </mrow>\\n <annotation>$$ U $$</annotation>\\n </semantics></math>-statistics. To account for potential confounders, we use reweighted data where the weights are determined by estimated propensity scores. The proposed method does not require any parametric assumptions on the outcomes and bypasses the need for modelling the treatment effect for each study subgroup. We establish the asymptotic normality for the test statistic and demonstrate its superior numerical performance over several competing approaches via simulation studies. Two real data applications are discussed: an employment programme evaluation study and a mental health study of China's one-child policy.</p>\",\"PeriodicalId\":55281,\"journal\":{\"name\":\"Canadian Journal of Statistics-Revue Canadienne De Statistique\",\"volume\":\"51 2\",\"pages\":\"531-558\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2022-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Canadian Journal of Statistics-Revue Canadienne De Statistique\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cjs.11728\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Journal of Statistics-Revue Canadienne De Statistique","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cjs.11728","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Nonparametric tests for treatment effect heterogeneity in observational studies
We consider the problem of testing for treatment effect heterogeneity in observational studies and propose a nonparametric test based on multisample -statistics. To account for potential confounders, we use reweighted data where the weights are determined by estimated propensity scores. The proposed method does not require any parametric assumptions on the outcomes and bypasses the need for modelling the treatment effect for each study subgroup. We establish the asymptotic normality for the test statistic and demonstrate its superior numerical performance over several competing approaches via simulation studies. Two real data applications are discussed: an employment programme evaluation study and a mental health study of China's one-child policy.
期刊介绍:
The Canadian Journal of Statistics is the official journal of the Statistical Society of Canada. It has a reputation internationally as an excellent journal. The editorial board is comprised of statistical scientists with applied, computational, methodological, theoretical and probabilistic interests. Their role is to ensure that the journal continues to provide an international forum for the discipline of Statistics.
The journal seeks papers making broad points of interest to many readers, whereas papers making important points of more specific interest are better placed in more specialized journals. The levels of innovation and impact are key in the evaluation of submitted manuscripts.