Shadrach Yaw Amponsah, P. M. Takouda, E. Ben-Awuah
{"title":"露天矿随机生产调度优化的多目标遗传算法","authors":"Shadrach Yaw Amponsah, P. M. Takouda, E. Ben-Awuah","doi":"10.1080/17480930.2023.2196918","DOIUrl":null,"url":null,"abstract":"ABSTRACT The conventional approach to mine planning is to use a single estimated orebody model as the basis for production scheduling. This approach, however, does not consider grade uncertainties associated with grade estimation. These uncertainties have a significant impact on the net present value (NPV) and can only be accounted for when modelled as part of the production scheduling optimisation problem. In this research, a set of equally probable simulated orebodies generated through Sequential Gaussian Simulation is used as input to a stochastic optimisation model solved with genetic algorithm (GA). Grade variability is considered as part of the stochastic model. The problem definition and resource constraints are formulated and optimised using a specially designed mining-specific GA. This GA is employed to handle partial block processing through a specialised chromosome encoding technique resulting in near-optimal solutions. Two case studies are presented which compare results from the stochastic model solved with GA (SGA) and a Stochastic Mixed Integer Linear Programming (SMILP) model solved with CPLEX. For the second case study, while the SMILP model was at an optimality gap of 101% after 28 days, the SGA model generated an NPV of $10,045 M at 10.16% optimality gap after 1.5 h.","PeriodicalId":49180,"journal":{"name":"International Journal of Mining Reclamation and Environment","volume":"37 1","pages":"460 - 487"},"PeriodicalIF":2.7000,"publicationDate":"2023-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Multiple Objective Genetic Algorithm Approach for Stochastic Open Pit Production Scheduling Optimisation\",\"authors\":\"Shadrach Yaw Amponsah, P. M. Takouda, E. Ben-Awuah\",\"doi\":\"10.1080/17480930.2023.2196918\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT The conventional approach to mine planning is to use a single estimated orebody model as the basis for production scheduling. This approach, however, does not consider grade uncertainties associated with grade estimation. These uncertainties have a significant impact on the net present value (NPV) and can only be accounted for when modelled as part of the production scheduling optimisation problem. In this research, a set of equally probable simulated orebodies generated through Sequential Gaussian Simulation is used as input to a stochastic optimisation model solved with genetic algorithm (GA). Grade variability is considered as part of the stochastic model. The problem definition and resource constraints are formulated and optimised using a specially designed mining-specific GA. This GA is employed to handle partial block processing through a specialised chromosome encoding technique resulting in near-optimal solutions. Two case studies are presented which compare results from the stochastic model solved with GA (SGA) and a Stochastic Mixed Integer Linear Programming (SMILP) model solved with CPLEX. For the second case study, while the SMILP model was at an optimality gap of 101% after 28 days, the SGA model generated an NPV of $10,045 M at 10.16% optimality gap after 1.5 h.\",\"PeriodicalId\":49180,\"journal\":{\"name\":\"International Journal of Mining Reclamation and Environment\",\"volume\":\"37 1\",\"pages\":\"460 - 487\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2023-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Mining Reclamation and Environment\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/17480930.2023.2196918\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mining Reclamation and Environment","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/17480930.2023.2196918","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
A Multiple Objective Genetic Algorithm Approach for Stochastic Open Pit Production Scheduling Optimisation
ABSTRACT The conventional approach to mine planning is to use a single estimated orebody model as the basis for production scheduling. This approach, however, does not consider grade uncertainties associated with grade estimation. These uncertainties have a significant impact on the net present value (NPV) and can only be accounted for when modelled as part of the production scheduling optimisation problem. In this research, a set of equally probable simulated orebodies generated through Sequential Gaussian Simulation is used as input to a stochastic optimisation model solved with genetic algorithm (GA). Grade variability is considered as part of the stochastic model. The problem definition and resource constraints are formulated and optimised using a specially designed mining-specific GA. This GA is employed to handle partial block processing through a specialised chromosome encoding technique resulting in near-optimal solutions. Two case studies are presented which compare results from the stochastic model solved with GA (SGA) and a Stochastic Mixed Integer Linear Programming (SMILP) model solved with CPLEX. For the second case study, while the SMILP model was at an optimality gap of 101% after 28 days, the SGA model generated an NPV of $10,045 M at 10.16% optimality gap after 1.5 h.
期刊介绍:
The International Journal of Mining, Reclamation and Environment published research on mining and environmental technology engineering relating to metalliferous deposits, coal, oil sands, and industrial minerals.
We welcome environmental mining research papers that explore:
-Mining environmental impact assessment and permitting-
Mining and processing technologies-
Mining waste management and waste minimization practices in mining-
Mine site closure-
Mining decommissioning and reclamation-
Acid mine drainage.
The International Journal of Mining, Reclamation and Environment welcomes mining research papers that explore:
-Design of surface and underground mines (economics, geotechnical, production scheduling, ventilation)-
Mine planning and optimization-
Mining geostatics-
Mine drilling and blasting technologies-
Mining material handling systems-
Mine equipment