用可变形的空心胶囊测量细胞收缩力

IF 1.2 Q3 MULTIDISCIPLINARY SCIENCES The EuroBiotech Journal Pub Date : 2022-04-01 DOI:10.2478/ebtj-2022-0009
J. Ting, Donald K. Martin
{"title":"用可变形的空心胶囊测量细胞收缩力","authors":"J. Ting, Donald K. Martin","doi":"10.2478/ebtj-2022-0009","DOIUrl":null,"url":null,"abstract":"Abstract There are several possible ways to measure the contraction of cells in vitro. Here, we report measurements of the contractile properties of 3T3-L1 cells grown to confluence on 3D hollow capsules. The capsules were fabricated using the layer-by-layer polyelectrolyte deposition technique on a polymer core. After the polyelectrolyte film was completed, the core was dissolved to leave the hollow capsule. The contractile force of the cells was determined from the deformation in the capsule size induced by interruption of the actin cytoskeleton of the cells that adhered to the outer surface of the hollow capsules, using prior measurements of the elastic modulus of the capsule. From the measurements of the compressive modulus for the capsules (of 6.52 μN), those capsule deformations indicate that the forskolin relaxed the layer of cells by 19.6 μN and the cytochalasin-D relaxed the layer of cells by 45.6 μN. The density of cells in the layer indicated that the force associated with the forskolin-induced relaxation of a single cell is 3.2 nN and the force associated with the cytochalasin-D-induced relaxation of a single cell is 7.5 nN. The mechanism of action of forskolin through second messenger pathways to disrupt the assembly of actin stress fibres also explains its reduced effect on cell contraction compared to that for cytochalasin-D, which is a compound that directly inhibits the polymerization of F-actin filaments.","PeriodicalId":22379,"journal":{"name":"The EuroBiotech Journal","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cell contractile force measured using a deformable hollow capsule\",\"authors\":\"J. Ting, Donald K. Martin\",\"doi\":\"10.2478/ebtj-2022-0009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract There are several possible ways to measure the contraction of cells in vitro. Here, we report measurements of the contractile properties of 3T3-L1 cells grown to confluence on 3D hollow capsules. The capsules were fabricated using the layer-by-layer polyelectrolyte deposition technique on a polymer core. After the polyelectrolyte film was completed, the core was dissolved to leave the hollow capsule. The contractile force of the cells was determined from the deformation in the capsule size induced by interruption of the actin cytoskeleton of the cells that adhered to the outer surface of the hollow capsules, using prior measurements of the elastic modulus of the capsule. From the measurements of the compressive modulus for the capsules (of 6.52 μN), those capsule deformations indicate that the forskolin relaxed the layer of cells by 19.6 μN and the cytochalasin-D relaxed the layer of cells by 45.6 μN. The density of cells in the layer indicated that the force associated with the forskolin-induced relaxation of a single cell is 3.2 nN and the force associated with the cytochalasin-D-induced relaxation of a single cell is 7.5 nN. The mechanism of action of forskolin through second messenger pathways to disrupt the assembly of actin stress fibres also explains its reduced effect on cell contraction compared to that for cytochalasin-D, which is a compound that directly inhibits the polymerization of F-actin filaments.\",\"PeriodicalId\":22379,\"journal\":{\"name\":\"The EuroBiotech Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2022-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The EuroBiotech Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/ebtj-2022-0009\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The EuroBiotech Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/ebtj-2022-0009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

摘要有几种可能的方法可以在体外测量细胞的收缩。在这里,我们报道了在3D中空胶囊上生长到汇合的3T3-L1细胞的收缩特性的测量。使用聚合物芯上的逐层聚电解质沉积技术制造胶囊。在完成聚电解质膜之后,将核溶解以离开中空胶囊。细胞的收缩力是通过使用先前对胶囊弹性模量的测量,由粘附在中空胶囊外表面的细胞的肌动蛋白细胞骨架的中断引起的胶囊大小的变形来确定的。根据胶囊(6.52μN)的压缩模量的测量,这些胶囊变形表明毛喉素使细胞层松弛19.6μN,细胞松弛素-D使细胞层放松45.6μN。该层中的细胞密度表明,与毛喉素诱导的单细胞松弛相关的力为3.2nN,与细胞松弛素D诱导的单电池松弛相关的作用力为7.5nN。毛喉素通过第二信使途径破坏肌动蛋白应力纤维组装的作用机制也解释了与细胞松弛素-D(一种直接抑制F-肌动蛋白丝聚合的化合物)相比,毛喉素对细胞收缩的影响降低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Cell contractile force measured using a deformable hollow capsule
Abstract There are several possible ways to measure the contraction of cells in vitro. Here, we report measurements of the contractile properties of 3T3-L1 cells grown to confluence on 3D hollow capsules. The capsules were fabricated using the layer-by-layer polyelectrolyte deposition technique on a polymer core. After the polyelectrolyte film was completed, the core was dissolved to leave the hollow capsule. The contractile force of the cells was determined from the deformation in the capsule size induced by interruption of the actin cytoskeleton of the cells that adhered to the outer surface of the hollow capsules, using prior measurements of the elastic modulus of the capsule. From the measurements of the compressive modulus for the capsules (of 6.52 μN), those capsule deformations indicate that the forskolin relaxed the layer of cells by 19.6 μN and the cytochalasin-D relaxed the layer of cells by 45.6 μN. The density of cells in the layer indicated that the force associated with the forskolin-induced relaxation of a single cell is 3.2 nN and the force associated with the cytochalasin-D-induced relaxation of a single cell is 7.5 nN. The mechanism of action of forskolin through second messenger pathways to disrupt the assembly of actin stress fibres also explains its reduced effect on cell contraction compared to that for cytochalasin-D, which is a compound that directly inhibits the polymerization of F-actin filaments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
The EuroBiotech Journal
The EuroBiotech Journal Agricultural and Biological Sciences-Food Science
CiteScore
3.60
自引率
0.00%
发文量
17
审稿时长
10 weeks
期刊最新文献
Artificial cells: A potentially groundbreaking field of research and therapy Germination and early seedling growth in four Plantago species in response to Zn, Cu and Fe Different Level of Tolerance to Herbicides is Displayed by Triticum aestivum L. Cultivars Depending on Herbicide Category and Mode of Application Efficacy of Beauveria bassiana and Metarhizium anisopliae against wheat aphid Comparative effect of probiotic and antibiotic on honey bees colony functional traits
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1