Pakawat Pormmoon, Piyanat Charoenamnuaysuk, C. Jaturapitakkul, P. Chindaprasirt, Weerachart Tangchirapat
{"title":"含有高比例底灰与粉煤灰混合的高性能混凝土的强度、收缩、热演化和微观结构","authors":"Pakawat Pormmoon, Piyanat Charoenamnuaysuk, C. Jaturapitakkul, P. Chindaprasirt, Weerachart Tangchirapat","doi":"10.1080/21650373.2023.2214138","DOIUrl":null,"url":null,"abstract":"This study examines the use of ground bottom ash incorporating fly ash in high performance concrete. A self-compacting concrete was considered in this study as to maximize the properties of high performance concrete. Bottom ash was processed to a fine consistency by oven-drying, sieving, and grinding. Ordinary Portland cement (OPC), sieved and ground bottom ash (GBA), and fly ash (FA) were used for producing high performance concrete at a W/B ratio of 0.27. Replacement of 50% cement by GBA produced 101.0 MPa concrete at 28 days: 21.6% stronger than OPC concrete. The 50% GBA mixture needed a greater quantity of superplasticizer to satisfy slump flow requirements for self-compacting concrete, but that dosage was reduced with a partial replacement of GBA by FA. Elastic moduli of all blended concretes matched OPC concrete. However, the blended concretes experienced much less autogenous shrinkage. Pastes containing GBA and FA have less portlandite than OPC paste. In addition, replacing OPC by GBA–FA substantially reduced cumulative heat evolution.","PeriodicalId":48521,"journal":{"name":"Journal of Sustainable Cement-Based Materials","volume":"12 1","pages":"1270 - 1285"},"PeriodicalIF":4.7000,"publicationDate":"2023-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Strength, shrinkage, heat evolution, and microstructure of high performance concrete containing high proportions of ground bottom ash blended with fly ash\",\"authors\":\"Pakawat Pormmoon, Piyanat Charoenamnuaysuk, C. Jaturapitakkul, P. Chindaprasirt, Weerachart Tangchirapat\",\"doi\":\"10.1080/21650373.2023.2214138\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study examines the use of ground bottom ash incorporating fly ash in high performance concrete. A self-compacting concrete was considered in this study as to maximize the properties of high performance concrete. Bottom ash was processed to a fine consistency by oven-drying, sieving, and grinding. Ordinary Portland cement (OPC), sieved and ground bottom ash (GBA), and fly ash (FA) were used for producing high performance concrete at a W/B ratio of 0.27. Replacement of 50% cement by GBA produced 101.0 MPa concrete at 28 days: 21.6% stronger than OPC concrete. The 50% GBA mixture needed a greater quantity of superplasticizer to satisfy slump flow requirements for self-compacting concrete, but that dosage was reduced with a partial replacement of GBA by FA. Elastic moduli of all blended concretes matched OPC concrete. However, the blended concretes experienced much less autogenous shrinkage. Pastes containing GBA and FA have less portlandite than OPC paste. In addition, replacing OPC by GBA–FA substantially reduced cumulative heat evolution.\",\"PeriodicalId\":48521,\"journal\":{\"name\":\"Journal of Sustainable Cement-Based Materials\",\"volume\":\"12 1\",\"pages\":\"1270 - 1285\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2023-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Sustainable Cement-Based Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/21650373.2023.2214138\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sustainable Cement-Based Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/21650373.2023.2214138","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
Strength, shrinkage, heat evolution, and microstructure of high performance concrete containing high proportions of ground bottom ash blended with fly ash
This study examines the use of ground bottom ash incorporating fly ash in high performance concrete. A self-compacting concrete was considered in this study as to maximize the properties of high performance concrete. Bottom ash was processed to a fine consistency by oven-drying, sieving, and grinding. Ordinary Portland cement (OPC), sieved and ground bottom ash (GBA), and fly ash (FA) were used for producing high performance concrete at a W/B ratio of 0.27. Replacement of 50% cement by GBA produced 101.0 MPa concrete at 28 days: 21.6% stronger than OPC concrete. The 50% GBA mixture needed a greater quantity of superplasticizer to satisfy slump flow requirements for self-compacting concrete, but that dosage was reduced with a partial replacement of GBA by FA. Elastic moduli of all blended concretes matched OPC concrete. However, the blended concretes experienced much less autogenous shrinkage. Pastes containing GBA and FA have less portlandite than OPC paste. In addition, replacing OPC by GBA–FA substantially reduced cumulative heat evolution.
期刊介绍:
The Journal of Sustainable Cement-Based Materials aims to publish theoretical and applied researches on materials, products and structures that incorporate cement. The journal is a forum for discussion of research on manufacture, hydration and performance of cement-based materials; novel experimental techniques; the latest analytical and modelling methods; the examination and the diagnosis of real cement and concrete structures; and the potential for improved cement-based materials. The journal welcomes original research papers, major reviews, rapid communications and selected conference papers. The Journal of Sustainable Cement-Based Materials covers a wide range of topics within its subject category, including but are not limited to: • raw materials and manufacture of cement • mixing, rheology and hydration • admixtures • structural characteristics and performance of cement-based materials • characterisation techniques and modeling • use of fibre in cement based-materials • degradation and repair of cement-based materials • novel testing techniques and applications • waste management