{"title":"二维GDSW重叠Schwarz预条件的多级推广","authors":"Alexander Heinlein, O. Rheinbach, F. Röver","doi":"10.1515/cmam-2022-0168","DOIUrl":null,"url":null,"abstract":"Abstract Multilevel extensions of overlapping Schwarz domain decomposition preconditioners of Generalized Dryja–Smith–Widlund (GDSW) type are considered in this paper. The original GDSW preconditioner is a two-level overlapping Schwarz domain decomposition preconditioner, which can be constructed algebraically from the fully assembled stiffness matrix. The FROSch software, which belongs to the ShyLU package of the Trilinos software library, provides parallel implementations of different variants of GDSW preconditioners. The coarse problem can limit the parallel scalability of two-level GDSW preconditioners. As a remedy, in the past, three-level GDSW approaches have been proposed, which can significantly extend the range of scalability. Here, a multilevel extension of the GDSW preconditioner is introduced and analyzed. Finally, parallel results for the implementation in FROSch for up to 40 000 cores of the SuperMUC-NG supercomputer at Leibniz Supercomputing Centre (LRZ) and to 48 000 cores of the JUWELS supercomputer at Jülich Supercomputing Centre (JSC) are presented.","PeriodicalId":48751,"journal":{"name":"Computational Methods in Applied Mathematics","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2023-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Multilevel Extension of the GDSW Overlapping Schwarz Preconditioner in Two Dimensions\",\"authors\":\"Alexander Heinlein, O. Rheinbach, F. Röver\",\"doi\":\"10.1515/cmam-2022-0168\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Multilevel extensions of overlapping Schwarz domain decomposition preconditioners of Generalized Dryja–Smith–Widlund (GDSW) type are considered in this paper. The original GDSW preconditioner is a two-level overlapping Schwarz domain decomposition preconditioner, which can be constructed algebraically from the fully assembled stiffness matrix. The FROSch software, which belongs to the ShyLU package of the Trilinos software library, provides parallel implementations of different variants of GDSW preconditioners. The coarse problem can limit the parallel scalability of two-level GDSW preconditioners. As a remedy, in the past, three-level GDSW approaches have been proposed, which can significantly extend the range of scalability. Here, a multilevel extension of the GDSW preconditioner is introduced and analyzed. Finally, parallel results for the implementation in FROSch for up to 40 000 cores of the SuperMUC-NG supercomputer at Leibniz Supercomputing Centre (LRZ) and to 48 000 cores of the JUWELS supercomputer at Jülich Supercomputing Centre (JSC) are presented.\",\"PeriodicalId\":48751,\"journal\":{\"name\":\"Computational Methods in Applied Mathematics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Methods in Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/cmam-2022-0168\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Methods in Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/cmam-2022-0168","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
A Multilevel Extension of the GDSW Overlapping Schwarz Preconditioner in Two Dimensions
Abstract Multilevel extensions of overlapping Schwarz domain decomposition preconditioners of Generalized Dryja–Smith–Widlund (GDSW) type are considered in this paper. The original GDSW preconditioner is a two-level overlapping Schwarz domain decomposition preconditioner, which can be constructed algebraically from the fully assembled stiffness matrix. The FROSch software, which belongs to the ShyLU package of the Trilinos software library, provides parallel implementations of different variants of GDSW preconditioners. The coarse problem can limit the parallel scalability of two-level GDSW preconditioners. As a remedy, in the past, three-level GDSW approaches have been proposed, which can significantly extend the range of scalability. Here, a multilevel extension of the GDSW preconditioner is introduced and analyzed. Finally, parallel results for the implementation in FROSch for up to 40 000 cores of the SuperMUC-NG supercomputer at Leibniz Supercomputing Centre (LRZ) and to 48 000 cores of the JUWELS supercomputer at Jülich Supercomputing Centre (JSC) are presented.
期刊介绍:
The highly selective international mathematical journal Computational Methods in Applied Mathematics (CMAM) considers original mathematical contributions to computational methods and numerical analysis with applications mainly related to PDEs.
CMAM seeks to be interdisciplinary while retaining the common thread of numerical analysis, it is intended to be readily readable and meant for a wide circle of researchers in applied mathematics.
The journal is published by De Gruyter on behalf of the Institute of Mathematics of the National Academy of Science of Belarus.