图形的高性能多项式根查找

IF 1.4 Q3 COMPUTER SCIENCE, SOFTWARE ENGINEERING Proceedings of the ACM on computer graphics and interactive techniques Pub Date : 2022-07-25 DOI:10.1145/3543865
Cem Yuksel
{"title":"图形的高性能多项式根查找","authors":"Cem Yuksel","doi":"10.1145/3543865","DOIUrl":null,"url":null,"abstract":"We present a computationally-efficient and numerically-robust algorithm for finding real roots of polynomials. It begins with determining the intervals where the given polynomial is monotonic. Then, it performs a robust variant of Newton iterations to find the real root within each interval, providing fast and guaranteed convergence and satisfying the given error bound, as permitted by the numerical precision used. For cubic polynomials, the algorithm is more accurate and faster than both the analytical solution and directly applying Newton iterations. It trivially extends to polynomials with arbitrary degrees, but it is limited to finding the real roots only and has quadratic worst-case complexity in terms of the polynomial's degree. We show that our method outperforms alternative polynomial solutions we tested up to degree 20. We also present an example rendering application with a known efficient numerical solution and show that our method provides faster, more accurate, and more robust solutions by solving polynomials of degree 10.","PeriodicalId":74536,"journal":{"name":"Proceedings of the ACM on computer graphics and interactive techniques","volume":"5 1","pages":"1 - 15"},"PeriodicalIF":1.4000,"publicationDate":"2022-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"High-Performance Polynomial Root Finding for Graphics\",\"authors\":\"Cem Yuksel\",\"doi\":\"10.1145/3543865\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a computationally-efficient and numerically-robust algorithm for finding real roots of polynomials. It begins with determining the intervals where the given polynomial is monotonic. Then, it performs a robust variant of Newton iterations to find the real root within each interval, providing fast and guaranteed convergence and satisfying the given error bound, as permitted by the numerical precision used. For cubic polynomials, the algorithm is more accurate and faster than both the analytical solution and directly applying Newton iterations. It trivially extends to polynomials with arbitrary degrees, but it is limited to finding the real roots only and has quadratic worst-case complexity in terms of the polynomial's degree. We show that our method outperforms alternative polynomial solutions we tested up to degree 20. We also present an example rendering application with a known efficient numerical solution and show that our method provides faster, more accurate, and more robust solutions by solving polynomials of degree 10.\",\"PeriodicalId\":74536,\"journal\":{\"name\":\"Proceedings of the ACM on computer graphics and interactive techniques\",\"volume\":\"5 1\",\"pages\":\"1 - 15\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2022-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ACM on computer graphics and interactive techniques\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3543865\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM on computer graphics and interactive techniques","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3543865","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 2

摘要

我们提出了一种计算高效且数值稳健的多项式实根算法。它从确定给定多项式是单调的区间开始。然后,它执行牛顿迭代的稳健变体,以在每个区间内找到实根,提供快速且有保证的收敛性,并满足给定的误差范围,这是所使用的数值精度所允许的。对于三次多项式,该算法比解析解和直接应用牛顿迭代更准确、更快。它平凡地扩展到具有任意次数的多项式,但它仅限于找到实根,并且根据多项式的次数具有二次最坏情况复杂度。我们证明,我们的方法优于我们测试的20次替代多项式解。我们还提供了一个具有已知有效数值解的示例渲染应用程序,并表明我们的方法通过求解10次多项式提供了更快、更准确和更稳健的解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
High-Performance Polynomial Root Finding for Graphics
We present a computationally-efficient and numerically-robust algorithm for finding real roots of polynomials. It begins with determining the intervals where the given polynomial is monotonic. Then, it performs a robust variant of Newton iterations to find the real root within each interval, providing fast and guaranteed convergence and satisfying the given error bound, as permitted by the numerical precision used. For cubic polynomials, the algorithm is more accurate and faster than both the analytical solution and directly applying Newton iterations. It trivially extends to polynomials with arbitrary degrees, but it is limited to finding the real roots only and has quadratic worst-case complexity in terms of the polynomial's degree. We show that our method outperforms alternative polynomial solutions we tested up to degree 20. We also present an example rendering application with a known efficient numerical solution and show that our method provides faster, more accurate, and more robust solutions by solving polynomials of degree 10.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.90
自引率
0.00%
发文量
0
期刊最新文献
Using Deep Learning to Increase Eye-Tracking Robustness, Accuracy, and Precision in Virtual Reality. A Multilevel Active-Set Preconditioner for Box-Constrained Pressure Poisson Solvers Motion In-Betweening with Phase Manifolds NeuroDog A Unified Analysis of Penalty-Based Collision Energies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1