{"title":"基于样条函数的多项式时间趋势AR(1)模型的贝叶斯估计","authors":"V. Agiwal, J. Jeevan Kumar, Narinder Kumar","doi":"10.1080/01966324.2021.1903368","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, we develop an estimation procedure for an autoregressive model with polynomial time trend approximated by a spline function. Spline function has the advantage of approximating the non-linear time series in an appropriate degree of polynomial time trend model. For Bayesian parameter estimation, the conditional posterior distribution is obtained under two symmetric loss functions. Due to the complex form of the conditional posterior distribution, Markov Chain Monte Carlo (MCMC) approach is used to estimate the Bayes estimators. The performance of Bayes estimators is compared with that of the corresponding maximum likelihood estimators (MLEs) in terms of mean squared error (MSE) and average absolute bias (AB) via a simulation study. To illustrate the proposed study, import series of Brazil, Russia, India, China, and South Africa (BRICS) countries are analyzed.","PeriodicalId":35850,"journal":{"name":"American Journal of Mathematical and Management Sciences","volume":"41 1","pages":"13 - 23"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/01966324.2021.1903368","citationCount":"0","resultStr":"{\"title\":\"Bayesian Estimation of the Polynomial Time Trend AR(1) Model through Spline Function\",\"authors\":\"V. Agiwal, J. Jeevan Kumar, Narinder Kumar\",\"doi\":\"10.1080/01966324.2021.1903368\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this paper, we develop an estimation procedure for an autoregressive model with polynomial time trend approximated by a spline function. Spline function has the advantage of approximating the non-linear time series in an appropriate degree of polynomial time trend model. For Bayesian parameter estimation, the conditional posterior distribution is obtained under two symmetric loss functions. Due to the complex form of the conditional posterior distribution, Markov Chain Monte Carlo (MCMC) approach is used to estimate the Bayes estimators. The performance of Bayes estimators is compared with that of the corresponding maximum likelihood estimators (MLEs) in terms of mean squared error (MSE) and average absolute bias (AB) via a simulation study. To illustrate the proposed study, import series of Brazil, Russia, India, China, and South Africa (BRICS) countries are analyzed.\",\"PeriodicalId\":35850,\"journal\":{\"name\":\"American Journal of Mathematical and Management Sciences\",\"volume\":\"41 1\",\"pages\":\"13 - 23\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/01966324.2021.1903368\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American Journal of Mathematical and Management Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/01966324.2021.1903368\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Business, Management and Accounting\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Mathematical and Management Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/01966324.2021.1903368","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Business, Management and Accounting","Score":null,"Total":0}
Bayesian Estimation of the Polynomial Time Trend AR(1) Model through Spline Function
Abstract In this paper, we develop an estimation procedure for an autoregressive model with polynomial time trend approximated by a spline function. Spline function has the advantage of approximating the non-linear time series in an appropriate degree of polynomial time trend model. For Bayesian parameter estimation, the conditional posterior distribution is obtained under two symmetric loss functions. Due to the complex form of the conditional posterior distribution, Markov Chain Monte Carlo (MCMC) approach is used to estimate the Bayes estimators. The performance of Bayes estimators is compared with that of the corresponding maximum likelihood estimators (MLEs) in terms of mean squared error (MSE) and average absolute bias (AB) via a simulation study. To illustrate the proposed study, import series of Brazil, Russia, India, China, and South Africa (BRICS) countries are analyzed.