{"title":"AA7050/B4Cp杂化复合材料的摩擦性能","authors":"R. Ranjith, P. Giridharan, M. Subramanian","doi":"10.1504/ijcmsse.2019.10023921","DOIUrl":null,"url":null,"abstract":"In this work, AA7050 aluminium alloy reinforced with SiCp was fabricated through the liquid stir casting technique. The influence of % reinforcement, sliding speed, applied load and sliding distance on friction coefficient was investigated using a pin on disc equipment with tests based on the design of experiments. The results revealed that the friction coefficient increases with an increase in % reinforcement. Sliding speed, load and distance follow the similar trend that is at saddle point it registers maximum and after that COF decreases with an increase in any of the above-said parameters. The result showed that the presence of a mechanical mixed layer reduces the coefficient of friction and it's broke down leads to an increase in friction factor. The presence of mechanical mixed layer was confirmed through EDAX analysis. A mathematical model for friction coefficient was developed using response surface methodology and the combined effect of process parameters was thoroughly analysed.","PeriodicalId":39426,"journal":{"name":"International Journal of Computational Materials Science and Surface Engineering","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Frictional behaviour of AA7050/B4Cp hybrid composites\",\"authors\":\"R. Ranjith, P. Giridharan, M. Subramanian\",\"doi\":\"10.1504/ijcmsse.2019.10023921\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, AA7050 aluminium alloy reinforced with SiCp was fabricated through the liquid stir casting technique. The influence of % reinforcement, sliding speed, applied load and sliding distance on friction coefficient was investigated using a pin on disc equipment with tests based on the design of experiments. The results revealed that the friction coefficient increases with an increase in % reinforcement. Sliding speed, load and distance follow the similar trend that is at saddle point it registers maximum and after that COF decreases with an increase in any of the above-said parameters. The result showed that the presence of a mechanical mixed layer reduces the coefficient of friction and it's broke down leads to an increase in friction factor. The presence of mechanical mixed layer was confirmed through EDAX analysis. A mathematical model for friction coefficient was developed using response surface methodology and the combined effect of process parameters was thoroughly analysed.\",\"PeriodicalId\":39426,\"journal\":{\"name\":\"International Journal of Computational Materials Science and Surface Engineering\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Computational Materials Science and Surface Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/ijcmsse.2019.10023921\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computational Materials Science and Surface Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijcmsse.2019.10023921","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
Frictional behaviour of AA7050/B4Cp hybrid composites
In this work, AA7050 aluminium alloy reinforced with SiCp was fabricated through the liquid stir casting technique. The influence of % reinforcement, sliding speed, applied load and sliding distance on friction coefficient was investigated using a pin on disc equipment with tests based on the design of experiments. The results revealed that the friction coefficient increases with an increase in % reinforcement. Sliding speed, load and distance follow the similar trend that is at saddle point it registers maximum and after that COF decreases with an increase in any of the above-said parameters. The result showed that the presence of a mechanical mixed layer reduces the coefficient of friction and it's broke down leads to an increase in friction factor. The presence of mechanical mixed layer was confirmed through EDAX analysis. A mathematical model for friction coefficient was developed using response surface methodology and the combined effect of process parameters was thoroughly analysed.
期刊介绍:
IJCMSSE is a refereed international journal that aims to provide a blend of theoretical and applied study of computational materials science and surface engineering. The scope of IJCMSSE original scientific papers that describe computer methods of modelling, simulation, and prediction for designing materials and structures at all length scales. The Editors-in-Chief of IJCMSSE encourage the submission of fundamental and interdisciplinary contributions on materials science and engineering, surface engineering and computational methods of modelling, simulation, and prediction. Papers published in IJCMSSE involve the solution of current problems, in which it is necessary to apply computational materials science and surface engineering methods for solving relevant engineering problems.