概念设计的基于模型的系统工程:一种综合方法

IF 1.6 3区 工程技术 Q4 ENGINEERING, INDUSTRIAL Systems Engineering Pub Date : 2023-04-22 DOI:10.1002/sys.21688
Sharon Shoshany-Tavory, E. Peleg, A. Zonnenshain, G. Yudilevitch
{"title":"概念设计的基于模型的系统工程:一种综合方法","authors":"Sharon Shoshany-Tavory, E. Peleg, A. Zonnenshain, G. Yudilevitch","doi":"10.1002/sys.21688","DOIUrl":null,"url":null,"abstract":"Conceptual‐Design is an early development phase, where innovation and creativeness shape the future system/product. Model‐Based‐Conceptual‐Design (MBCD) attempts to use best‐practices of Model‐Based‐Systems‐Engineering (MBSE) to gain the envisioned benefits of model connectivity. Using MBSE supporting tools can transform Conceptual‐Design into a digital‐engineered process but may impede creativity and innovation. Concurrently, the design domain offers specific methods and tools for innovative Conceptual‐Design. In the current study, we explore an existing Conceptual‐Design framework and offer MBSE interpretation and tools extensions needed for its digital implementation. Through such exploration we highlight MBCD specific insights and discuss modeling‐innovation interrelations. The implementation was accomplished using a domain‐specific enabling software package on top of a market‐accepted UML/SysML platform, extending the language definitions, where appropriate. The framework guided extensions allow generation of innovative bottom‐up alternatives, solution integration, and solutions’ comparison. The use of modeling is shown to offer clearer process definition, specific methods assistance, and alternative ranking—both manually and automatically. Consequently, MBCD is accomplished, which supports innovation, while being digitally connected to full‐scale‐development models and the organizational assets at large. Through integration into the orderly Systems‐Engineering process, traceability is maintained, and repeated iterations are supported, where conceptual decisions may be revisited. Additionally, through the introduction of an assets’ catalog, cross‐organizational knowledge sharing is accomplished. The paper presents samples of the extensions, using a simplified example of technology design for Future Firefighting. The value of incorporating Conceptual‐Design specific methodology and tools is evaluated through feedback from multiple domain experts. Discussion and future research directions are offered.","PeriodicalId":54439,"journal":{"name":"Systems Engineering","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2023-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Model‐based‐systems‐engineering for conceptual design: An integrative approach\",\"authors\":\"Sharon Shoshany-Tavory, E. Peleg, A. Zonnenshain, G. Yudilevitch\",\"doi\":\"10.1002/sys.21688\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Conceptual‐Design is an early development phase, where innovation and creativeness shape the future system/product. Model‐Based‐Conceptual‐Design (MBCD) attempts to use best‐practices of Model‐Based‐Systems‐Engineering (MBSE) to gain the envisioned benefits of model connectivity. Using MBSE supporting tools can transform Conceptual‐Design into a digital‐engineered process but may impede creativity and innovation. Concurrently, the design domain offers specific methods and tools for innovative Conceptual‐Design. In the current study, we explore an existing Conceptual‐Design framework and offer MBSE interpretation and tools extensions needed for its digital implementation. Through such exploration we highlight MBCD specific insights and discuss modeling‐innovation interrelations. The implementation was accomplished using a domain‐specific enabling software package on top of a market‐accepted UML/SysML platform, extending the language definitions, where appropriate. The framework guided extensions allow generation of innovative bottom‐up alternatives, solution integration, and solutions’ comparison. The use of modeling is shown to offer clearer process definition, specific methods assistance, and alternative ranking—both manually and automatically. Consequently, MBCD is accomplished, which supports innovation, while being digitally connected to full‐scale‐development models and the organizational assets at large. Through integration into the orderly Systems‐Engineering process, traceability is maintained, and repeated iterations are supported, where conceptual decisions may be revisited. Additionally, through the introduction of an assets’ catalog, cross‐organizational knowledge sharing is accomplished. The paper presents samples of the extensions, using a simplified example of technology design for Future Firefighting. The value of incorporating Conceptual‐Design specific methodology and tools is evaluated through feedback from multiple domain experts. Discussion and future research directions are offered.\",\"PeriodicalId\":54439,\"journal\":{\"name\":\"Systems Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Systems Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/sys.21688\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, INDUSTRIAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Systems Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/sys.21688","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Model‐based‐systems‐engineering for conceptual design: An integrative approach
Conceptual‐Design is an early development phase, where innovation and creativeness shape the future system/product. Model‐Based‐Conceptual‐Design (MBCD) attempts to use best‐practices of Model‐Based‐Systems‐Engineering (MBSE) to gain the envisioned benefits of model connectivity. Using MBSE supporting tools can transform Conceptual‐Design into a digital‐engineered process but may impede creativity and innovation. Concurrently, the design domain offers specific methods and tools for innovative Conceptual‐Design. In the current study, we explore an existing Conceptual‐Design framework and offer MBSE interpretation and tools extensions needed for its digital implementation. Through such exploration we highlight MBCD specific insights and discuss modeling‐innovation interrelations. The implementation was accomplished using a domain‐specific enabling software package on top of a market‐accepted UML/SysML platform, extending the language definitions, where appropriate. The framework guided extensions allow generation of innovative bottom‐up alternatives, solution integration, and solutions’ comparison. The use of modeling is shown to offer clearer process definition, specific methods assistance, and alternative ranking—both manually and automatically. Consequently, MBCD is accomplished, which supports innovation, while being digitally connected to full‐scale‐development models and the organizational assets at large. Through integration into the orderly Systems‐Engineering process, traceability is maintained, and repeated iterations are supported, where conceptual decisions may be revisited. Additionally, through the introduction of an assets’ catalog, cross‐organizational knowledge sharing is accomplished. The paper presents samples of the extensions, using a simplified example of technology design for Future Firefighting. The value of incorporating Conceptual‐Design specific methodology and tools is evaluated through feedback from multiple domain experts. Discussion and future research directions are offered.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Systems Engineering
Systems Engineering 工程技术-工程:工业
CiteScore
5.10
自引率
20.00%
发文量
0
审稿时长
6 months
期刊介绍: Systems Engineering is a discipline whose responsibility it is to create and operate technologically enabled systems that satisfy stakeholder needs throughout their life cycle. Systems engineers reduce ambiguity by clearly defining stakeholder needs and customer requirements, they focus creativity by developing a system’s architecture and design and they manage the system’s complexity over time. Considerations taken into account by systems engineers include, among others, quality, cost and schedule, risk and opportunity under uncertainty, manufacturing and realization, performance and safety during operations, training and support, as well as disposal and recycling at the end of life. The journal welcomes original submissions in the field of Systems Engineering as defined above, but also encourages contributions that take an even broader perspective including the design and operation of systems-of-systems, the application of Systems Engineering to enterprises and complex socio-technical systems, the identification, selection and development of systems engineers as well as the evolution of systems and systems-of-systems over their entire lifecycle. Systems Engineering integrates all the disciplines and specialty groups into a coordinated team effort forming a structured development process that proceeds from concept to realization to operation. Increasingly important topics in Systems Engineering include the role of executable languages and models of systems, the concurrent use of physical and virtual prototyping, as well as the deployment of agile processes. Systems Engineering considers both the business and the technical needs of all stakeholders with the goal of providing a quality product that meets the user needs. Systems Engineering may be applied not only to products and services in the private sector but also to public infrastructures and socio-technical systems whose precise boundaries are often challenging to define.
期刊最新文献
Systematic approach to a government‐led technology roadmap for future‐ready adaptive traffic signal control systems Emergent knowledge patterns in verification artifacts On reference architectures Requirements engineering in industry 4.0: State of the art and directions to continuous requirements engineering Enhancing conceptual models with computational capabilities: A methodical approach to executable integrative modeling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1