基于边界控制方法的变密度重构逆问题的深度学习与连续迭代

Klibanov Michael V, Timonov Alexandre
{"title":"基于边界控制方法的变密度重构逆问题的深度学习与连续迭代","authors":"Klibanov Michael V, Timonov Alexandre","doi":"10.32523/2306-6172-2022-10-3-37-57","DOIUrl":null,"url":null,"abstract":"For the first time, two approaches, the deep learning and successive iterations, are proposed for use and implemented for enhancing the images reconstructed by the boundary control method. The construction of successive iterations is based on the reduction of a nonlinear inverse problem for a time-domain wave equation to a linear integral equation of the first kind. The computational effectiveness of the numerical techniques is demonstrated in the numerical experiments in two and three dimensions.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DEEP LEARNING AND SUCCESSIVE ITERATIONS FOR AN INVERSE PROBLEM OF THE VARIABLE DENSITY RECONSTRUCTION BY THE BOUNDARY CONTROL METHOD\",\"authors\":\"Klibanov Michael V, Timonov Alexandre\",\"doi\":\"10.32523/2306-6172-2022-10-3-37-57\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For the first time, two approaches, the deep learning and successive iterations, are proposed for use and implemented for enhancing the images reconstructed by the boundary control method. The construction of successive iterations is based on the reduction of a nonlinear inverse problem for a time-domain wave equation to a linear integral equation of the first kind. The computational effectiveness of the numerical techniques is demonstrated in the numerical experiments in two and three dimensions.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32523/2306-6172-2022-10-3-37-57\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32523/2306-6172-2022-10-3-37-57","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

首次提出并实现了两种方法,即深度学习和连续迭代,用于增强边界控制方法重建的图像。连续迭代的构造是基于将时域波动方程的非线性逆问题简化为第一类线性积分方程。在二维和三维数值实验中证明了数值技术的计算有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
DEEP LEARNING AND SUCCESSIVE ITERATIONS FOR AN INVERSE PROBLEM OF THE VARIABLE DENSITY RECONSTRUCTION BY THE BOUNDARY CONTROL METHOD
For the first time, two approaches, the deep learning and successive iterations, are proposed for use and implemented for enhancing the images reconstructed by the boundary control method. The construction of successive iterations is based on the reduction of a nonlinear inverse problem for a time-domain wave equation to a linear integral equation of the first kind. The computational effectiveness of the numerical techniques is demonstrated in the numerical experiments in two and three dimensions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1