Yunting Zheng, Shaohua Chen, Zhiyong Tan, Yongkui Sun
{"title":"基于多熵和支持向量机的铁路点机故障诊断研究","authors":"Yunting Zheng, Shaohua Chen, Zhiyong Tan, Yongkui Sun","doi":"10.1093/tse/tdac071","DOIUrl":null,"url":null,"abstract":"\n A new fault diagnosis method is proposed to effectively extract the fault features of the sound signal of typical faults of ZDJ9 railway point machines. A multi-entropy feature extraction method is proposed by combing multi-scale permutation entropy and wavelet packet entropy. Firstly, empirical mode decomposition is performed on sound signals to obtain modal components with different time scales. Then, multi-scale permutation entropy is extracted from these components. Meanwhile, the wavelet packet entropy of the sound signals of these sensitive nodes is obtained by analyzing the reconstructed signals of the last layer nodes. Since the multi-scale arrangement entropy and the wavelet packet entropy can distinguish the subtle features of the signal, the subtle features of the original signal can be obtained as the feature vector of the ZDJ9 railway point machine in different states. To reduce the redundant information among the high-dimensional features, ReliefF is utilized. Finally, support vector machine (SVM) is used to judge the fault type of ZDJ9 railway point machine.","PeriodicalId":52804,"journal":{"name":"Transportation Safety and Environment","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2022-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on fault diagnosis of railway point machine based on multi-entropy and support vector machine\",\"authors\":\"Yunting Zheng, Shaohua Chen, Zhiyong Tan, Yongkui Sun\",\"doi\":\"10.1093/tse/tdac071\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n A new fault diagnosis method is proposed to effectively extract the fault features of the sound signal of typical faults of ZDJ9 railway point machines. A multi-entropy feature extraction method is proposed by combing multi-scale permutation entropy and wavelet packet entropy. Firstly, empirical mode decomposition is performed on sound signals to obtain modal components with different time scales. Then, multi-scale permutation entropy is extracted from these components. Meanwhile, the wavelet packet entropy of the sound signals of these sensitive nodes is obtained by analyzing the reconstructed signals of the last layer nodes. Since the multi-scale arrangement entropy and the wavelet packet entropy can distinguish the subtle features of the signal, the subtle features of the original signal can be obtained as the feature vector of the ZDJ9 railway point machine in different states. To reduce the redundant information among the high-dimensional features, ReliefF is utilized. Finally, support vector machine (SVM) is used to judge the fault type of ZDJ9 railway point machine.\",\"PeriodicalId\":52804,\"journal\":{\"name\":\"Transportation Safety and Environment\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2022-12-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transportation Safety and Environment\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1093/tse/tdac071\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"TRANSPORTATION SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportation Safety and Environment","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1093/tse/tdac071","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TRANSPORTATION SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Research on fault diagnosis of railway point machine based on multi-entropy and support vector machine
A new fault diagnosis method is proposed to effectively extract the fault features of the sound signal of typical faults of ZDJ9 railway point machines. A multi-entropy feature extraction method is proposed by combing multi-scale permutation entropy and wavelet packet entropy. Firstly, empirical mode decomposition is performed on sound signals to obtain modal components with different time scales. Then, multi-scale permutation entropy is extracted from these components. Meanwhile, the wavelet packet entropy of the sound signals of these sensitive nodes is obtained by analyzing the reconstructed signals of the last layer nodes. Since the multi-scale arrangement entropy and the wavelet packet entropy can distinguish the subtle features of the signal, the subtle features of the original signal can be obtained as the feature vector of the ZDJ9 railway point machine in different states. To reduce the redundant information among the high-dimensional features, ReliefF is utilized. Finally, support vector machine (SVM) is used to judge the fault type of ZDJ9 railway point machine.