对称极小曲面方程

IF 1.2 2区 数学 Q1 MATHEMATICS Indiana University Mathematics Journal Pub Date : 2023-01-22 DOI:10.1512/iumj.2020.69.8412
K. Fouladgar, L. Simon
{"title":"对称极小曲面方程","authors":"K. Fouladgar, L. Simon","doi":"10.1512/iumj.2020.69.8412","DOIUrl":null,"url":null,"abstract":"and, geometrically, A (u) represents the area functional for S(u); that is, A (u) is the (n+m−1)-dimensional Hausdorff measure H n+m−1(S(u)). This is clear because the integrand √ 1+|Du|2 um−1 for A (u) is the Jacobian of the map (x,ω) ∈Ω×Sm−1 7→ (x, u(x)ω)∈Ω×R, and this map is a local coordinate representation for the symmetric graph S(u). Since 1.1 1.1 expresses the fact that u is stationary with respect to A , we see that S(u) is stationary with respect to smooth symmetric deformations, and hence stationary with respect to all deformations by a well-known principle (see e.g. [Law72]). (The latter principle here is just the natural generalization of the fact that if a smooth hypersurface Σ is rotationally symmetric about an axis and if Σ is stationary with respect to smooth rotationally symmetric compactly supported perturbations, then Σ is minimal—i.e. stationary with respect to all smooth compactly supported perturbations whether symmetric or not.) Thus the smooth submanifold S(u) is stationary as a multiplicity 1 varifold in Ω× (R \\ {0}) and hence is a smooth minimal submanifold of Ω× (R \\{0}) as claimed.","PeriodicalId":50369,"journal":{"name":"Indiana University Mathematics Journal","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2023-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1512/iumj.2020.69.8412","citationCount":"3","resultStr":"{\"title\":\"The symmetric minimal surface equation\",\"authors\":\"K. Fouladgar, L. Simon\",\"doi\":\"10.1512/iumj.2020.69.8412\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"and, geometrically, A (u) represents the area functional for S(u); that is, A (u) is the (n+m−1)-dimensional Hausdorff measure H n+m−1(S(u)). This is clear because the integrand √ 1+|Du|2 um−1 for A (u) is the Jacobian of the map (x,ω) ∈Ω×Sm−1 7→ (x, u(x)ω)∈Ω×R, and this map is a local coordinate representation for the symmetric graph S(u). Since 1.1 1.1 expresses the fact that u is stationary with respect to A , we see that S(u) is stationary with respect to smooth symmetric deformations, and hence stationary with respect to all deformations by a well-known principle (see e.g. [Law72]). (The latter principle here is just the natural generalization of the fact that if a smooth hypersurface Σ is rotationally symmetric about an axis and if Σ is stationary with respect to smooth rotationally symmetric compactly supported perturbations, then Σ is minimal—i.e. stationary with respect to all smooth compactly supported perturbations whether symmetric or not.) Thus the smooth submanifold S(u) is stationary as a multiplicity 1 varifold in Ω× (R \\\\ {0}) and hence is a smooth minimal submanifold of Ω× (R \\\\{0}) as claimed.\",\"PeriodicalId\":50369,\"journal\":{\"name\":\"Indiana University Mathematics Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1512/iumj.2020.69.8412\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indiana University Mathematics Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1512/iumj.2020.69.8412\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indiana University Mathematics Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1512/iumj.2020.69.8412","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

摘要

并且,在几何上,A(u)表示S(u)的面积泛函;也就是说,A(u)是(n+m−1)维Hausdorff测度Hn+m−1(S(u))。这是清楚的,因为A(u)的被积函数√1+|Du|2 um−1是映射(x,ω)∈Ω×Sm−1 7的雅可比矩阵→ (x,u(x)ω)∈Ω×R,并且该映射是对称图S(u)的局部坐标表示。由于1.1 1.1表达了u相对于A是静止的这一事实,我们看到S(u)相对于光滑对称变形是静止的,因此根据众所周知的原理(例如,参见[Law72]),相对于所有变形都是静止的。(这里的后一个原理只是以下事实的自然推广:如果光滑超曲面∑关于轴旋转对称,并且如果∑相对于光滑旋转对称紧支撑扰动是静止的,那么∑是最小的——即相对于所有光滑紧支撑扰动(无论对称与否)是静止的。)因此,光滑子流形S(u)是Ω×(R\{0})中多重数为1的变倍的平稳子流形,因此是Ω×。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The symmetric minimal surface equation
and, geometrically, A (u) represents the area functional for S(u); that is, A (u) is the (n+m−1)-dimensional Hausdorff measure H n+m−1(S(u)). This is clear because the integrand √ 1+|Du|2 um−1 for A (u) is the Jacobian of the map (x,ω) ∈Ω×Sm−1 7→ (x, u(x)ω)∈Ω×R, and this map is a local coordinate representation for the symmetric graph S(u). Since 1.1 1.1 expresses the fact that u is stationary with respect to A , we see that S(u) is stationary with respect to smooth symmetric deformations, and hence stationary with respect to all deformations by a well-known principle (see e.g. [Law72]). (The latter principle here is just the natural generalization of the fact that if a smooth hypersurface Σ is rotationally symmetric about an axis and if Σ is stationary with respect to smooth rotationally symmetric compactly supported perturbations, then Σ is minimal—i.e. stationary with respect to all smooth compactly supported perturbations whether symmetric or not.) Thus the smooth submanifold S(u) is stationary as a multiplicity 1 varifold in Ω× (R \ {0}) and hence is a smooth minimal submanifold of Ω× (R \{0}) as claimed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.10
自引率
0.00%
发文量
52
审稿时长
4.5 months
期刊介绍: Information not localized
期刊最新文献
The symmetric minimal surface equation A central limit theorem for the degree of a random product of Cremona transformations C^{1,\alpha} Regularity of convex hypersurfaces with prescribed curvature measures Vanishing dissipation of the 2D anisotropic Boussinesq equations in the half plane Unique continuation inequalities for nonlinear Schroedinger equations based on uncertainty principles
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1