{"title":"中国嫦娥五号月球样本返回任务的机器人钻探","authors":"Zhang Tao, Yong Pang, Ting Zeng, Guoxing Wang, Shen Yin, Kun Xu, Guidong Mo, Xingwang Zhang, Lusi Wang, Shuai Yang, Zengzeng Zhao, Junjie Qin, Junshan Gong, Zhongxiang Zhao, Xuefeng Tong, Zhongwang Yin, Haiyuan Wang, Fan Zhao, Yanhong Zheng, Xiangjin Deng, Bin Wang, Jinchang Xu, Wei Wang, Shuangfei Yu, Xiaoming Lai, Xilun Ding","doi":"10.1177/02783649231187918","DOIUrl":null,"url":null,"abstract":"On December 2, 2020, a 2-m class robotic drill onboard the Chinese Chang’E 5 lunar lander successfully penetrated 1 m into the lunar regolith and collected 259.72 g of samples. This paper presents the design and development, terrestrial tests, and lunar sampling results of the robotic drill. First, the system design of the robotic drill, including its engineering objectives, drill configuration, drilling and coring methods, and rotational speed determination, was studied. Subsequently, a control strategy was proposed to address the geological uncertainty and complexity of the lunar surface. Terrestrial tests were conducted to assess the sampling performance of the robotic drill under both atmospheric and vacuum conditions. Finally, the results of drilling on the lunar surface were obtained, and the complex geological conditions encountered were analyzed. The success of the Chinese Chang’E 5 lunar sample-return mission demonstrates the feasibility of the proposed robotic drill. This study can serve as an important reference for future extraterrestrial robotic regolith-sampling missions.","PeriodicalId":54942,"journal":{"name":"International Journal of Robotics Research","volume":"42 1","pages":"586 - 613"},"PeriodicalIF":7.5000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Robotic drilling for the Chinese Chang’E 5 lunar sample-return mission\",\"authors\":\"Zhang Tao, Yong Pang, Ting Zeng, Guoxing Wang, Shen Yin, Kun Xu, Guidong Mo, Xingwang Zhang, Lusi Wang, Shuai Yang, Zengzeng Zhao, Junjie Qin, Junshan Gong, Zhongxiang Zhao, Xuefeng Tong, Zhongwang Yin, Haiyuan Wang, Fan Zhao, Yanhong Zheng, Xiangjin Deng, Bin Wang, Jinchang Xu, Wei Wang, Shuangfei Yu, Xiaoming Lai, Xilun Ding\",\"doi\":\"10.1177/02783649231187918\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"On December 2, 2020, a 2-m class robotic drill onboard the Chinese Chang’E 5 lunar lander successfully penetrated 1 m into the lunar regolith and collected 259.72 g of samples. This paper presents the design and development, terrestrial tests, and lunar sampling results of the robotic drill. First, the system design of the robotic drill, including its engineering objectives, drill configuration, drilling and coring methods, and rotational speed determination, was studied. Subsequently, a control strategy was proposed to address the geological uncertainty and complexity of the lunar surface. Terrestrial tests were conducted to assess the sampling performance of the robotic drill under both atmospheric and vacuum conditions. Finally, the results of drilling on the lunar surface were obtained, and the complex geological conditions encountered were analyzed. The success of the Chinese Chang’E 5 lunar sample-return mission demonstrates the feasibility of the proposed robotic drill. This study can serve as an important reference for future extraterrestrial robotic regolith-sampling missions.\",\"PeriodicalId\":54942,\"journal\":{\"name\":\"International Journal of Robotics Research\",\"volume\":\"42 1\",\"pages\":\"586 - 613\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Robotics Research\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1177/02783649231187918\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Robotics Research","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1177/02783649231187918","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ROBOTICS","Score":null,"Total":0}
Robotic drilling for the Chinese Chang’E 5 lunar sample-return mission
On December 2, 2020, a 2-m class robotic drill onboard the Chinese Chang’E 5 lunar lander successfully penetrated 1 m into the lunar regolith and collected 259.72 g of samples. This paper presents the design and development, terrestrial tests, and lunar sampling results of the robotic drill. First, the system design of the robotic drill, including its engineering objectives, drill configuration, drilling and coring methods, and rotational speed determination, was studied. Subsequently, a control strategy was proposed to address the geological uncertainty and complexity of the lunar surface. Terrestrial tests were conducted to assess the sampling performance of the robotic drill under both atmospheric and vacuum conditions. Finally, the results of drilling on the lunar surface were obtained, and the complex geological conditions encountered were analyzed. The success of the Chinese Chang’E 5 lunar sample-return mission demonstrates the feasibility of the proposed robotic drill. This study can serve as an important reference for future extraterrestrial robotic regolith-sampling missions.
期刊介绍:
The International Journal of Robotics Research (IJRR) has been a leading peer-reviewed publication in the field for over two decades. It holds the distinction of being the first scholarly journal dedicated to robotics research.
IJRR presents cutting-edge and thought-provoking original research papers, articles, and reviews that delve into groundbreaking trends, technical advancements, and theoretical developments in robotics. Renowned scholars and practitioners contribute to its content, offering their expertise and insights. This journal covers a wide range of topics, going beyond narrow technical advancements to encompass various aspects of robotics.
The primary aim of IJRR is to publish work that has lasting value for the scientific and technological advancement of the field. Only original, robust, and practical research that can serve as a foundation for further progress is considered for publication. The focus is on producing content that will remain valuable and relevant over time.
In summary, IJRR stands as a prestigious publication that drives innovation and knowledge in robotics research.