密度抑制运动模型的稳态和模式形成

IF 1.4 4区 数学 Q2 MATHEMATICS, APPLIED IMA Journal of Applied Mathematics Pub Date : 2021-04-01 DOI:10.1093/imamat/hxab006
Zhi-An Wang;Xin Xu
{"title":"密度抑制运动模型的稳态和模式形成","authors":"Zhi-An Wang;Xin Xu","doi":"10.1093/imamat/hxab006","DOIUrl":null,"url":null,"abstract":"This paper considers the stationary problem of density-suppressed motility models proposed in Fu et al. (2012) and Liu et al. (2011) in one dimension with Neumman boundary conditions. The models consist of parabolic equations with cross-diffusion and degeneracy. We employ the global bifurcation theory and Helly compactness theorem to explore the conditions under which non-constant stationary (pattern) solutions exist and asymptotic profiles of solutions as some parameter value is small. When the cell growth is not considered, we are able to show the monotonicity of solutions and hence achieve a global bifurcation diagram by treating the chemical diffusion rate as a bifurcation parameter. Furthermore, we show that the solutions have boundary spikes as the chemical diffusion rate tends to zero and identify the conditions for the non-existence of non-constant solutions. When transformed to specific motility functions, our results indeed give sharp conditions on the existence of non-constant stationary solutions. While with the cell growth, the structure of global bifurcation diagram is much more complicated and in particular the solution loses the monotonicity property. By treating the growth rate as a bifurcation parameter, we identify a minimum range of growth rate in which non-constant stationary solutions are warranted, while a global bifurcation diagram can still be attained in a special situation. We use numerical simulations to test our analytical results and illustrate that patterns can be very intricate and stable stationary solutions may not exist when the parameter value is outside the minimal range identified in our paper.","PeriodicalId":56297,"journal":{"name":"IMA Journal of Applied Mathematics","volume":"86 1","pages":"577-603"},"PeriodicalIF":1.4000,"publicationDate":"2021-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Steady states and pattern formation of the density-suppressed motility model\",\"authors\":\"Zhi-An Wang;Xin Xu\",\"doi\":\"10.1093/imamat/hxab006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper considers the stationary problem of density-suppressed motility models proposed in Fu et al. (2012) and Liu et al. (2011) in one dimension with Neumman boundary conditions. The models consist of parabolic equations with cross-diffusion and degeneracy. We employ the global bifurcation theory and Helly compactness theorem to explore the conditions under which non-constant stationary (pattern) solutions exist and asymptotic profiles of solutions as some parameter value is small. When the cell growth is not considered, we are able to show the monotonicity of solutions and hence achieve a global bifurcation diagram by treating the chemical diffusion rate as a bifurcation parameter. Furthermore, we show that the solutions have boundary spikes as the chemical diffusion rate tends to zero and identify the conditions for the non-existence of non-constant solutions. When transformed to specific motility functions, our results indeed give sharp conditions on the existence of non-constant stationary solutions. While with the cell growth, the structure of global bifurcation diagram is much more complicated and in particular the solution loses the monotonicity property. By treating the growth rate as a bifurcation parameter, we identify a minimum range of growth rate in which non-constant stationary solutions are warranted, while a global bifurcation diagram can still be attained in a special situation. We use numerical simulations to test our analytical results and illustrate that patterns can be very intricate and stable stationary solutions may not exist when the parameter value is outside the minimal range identified in our paper.\",\"PeriodicalId\":56297,\"journal\":{\"name\":\"IMA Journal of Applied Mathematics\",\"volume\":\"86 1\",\"pages\":\"577-603\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2021-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IMA Journal of Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/9514751/\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IMA Journal of Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://ieeexplore.ieee.org/document/9514751/","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 18

摘要

本文考虑Fu et al.(2012)和Liu et al.(2011)提出的密度抑制运动模型在一维具有Neumman边界条件的平稳性问题。该模型由具有交叉扩散和简并的抛物型方程组成。利用全局分岔理论和Helly紧性定理,探讨了非常平稳(模式)解存在的条件和当某参数值较小时解的渐近轮廓。当不考虑细胞生长时,我们可以将化学扩散速率作为分岔参数来显示解的单调性,从而得到全局分岔图。进一步,我们证明了当化学扩散速率趋于零时,解具有边界尖峰,并确定了非常数解不存在的条件。当转化为具体的运动函数时,我们的结果确实给出了非常平稳解存在的尖锐条件。但随着细胞的增长,全局分岔图的结构变得复杂,特别是解的单调性逐渐丧失。通过将增长率作为分岔参数,我们确定了增长率的最小范围,在此范围内保证了非常平稳解,而在特殊情况下仍然可以得到全局分岔图。我们使用数值模拟来测试我们的分析结果,并说明模式可能非常复杂,当参数值超出我们论文中确定的最小范围时,稳定的固定解可能不存在。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Steady states and pattern formation of the density-suppressed motility model
This paper considers the stationary problem of density-suppressed motility models proposed in Fu et al. (2012) and Liu et al. (2011) in one dimension with Neumman boundary conditions. The models consist of parabolic equations with cross-diffusion and degeneracy. We employ the global bifurcation theory and Helly compactness theorem to explore the conditions under which non-constant stationary (pattern) solutions exist and asymptotic profiles of solutions as some parameter value is small. When the cell growth is not considered, we are able to show the monotonicity of solutions and hence achieve a global bifurcation diagram by treating the chemical diffusion rate as a bifurcation parameter. Furthermore, we show that the solutions have boundary spikes as the chemical diffusion rate tends to zero and identify the conditions for the non-existence of non-constant solutions. When transformed to specific motility functions, our results indeed give sharp conditions on the existence of non-constant stationary solutions. While with the cell growth, the structure of global bifurcation diagram is much more complicated and in particular the solution loses the monotonicity property. By treating the growth rate as a bifurcation parameter, we identify a minimum range of growth rate in which non-constant stationary solutions are warranted, while a global bifurcation diagram can still be attained in a special situation. We use numerical simulations to test our analytical results and illustrate that patterns can be very intricate and stable stationary solutions may not exist when the parameter value is outside the minimal range identified in our paper.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.30
自引率
8.30%
发文量
32
审稿时长
24 months
期刊介绍: The IMA Journal of Applied Mathematics is a direct successor of the Journal of the Institute of Mathematics and its Applications which was started in 1965. It is an interdisciplinary journal that publishes research on mathematics arising in the physical sciences and engineering as well as suitable articles in the life sciences, social sciences, and finance. Submissions should address interesting and challenging mathematical problems arising in applications. A good balance between the development of the application(s) and the analysis is expected. Papers that either use established methods to address solved problems or that present analysis in the absence of applications will not be considered. The journal welcomes submissions in many research areas. Examples are: continuum mechanics materials science and elasticity, including boundary layer theory, combustion, complex flows and soft matter, electrohydrodynamics and magnetohydrodynamics, geophysical flows, granular flows, interfacial and free surface flows, vortex dynamics; elasticity theory; linear and nonlinear wave propagation, nonlinear optics and photonics; inverse problems; applied dynamical systems and nonlinear systems; mathematical physics; stochastic differential equations and stochastic dynamics; network science; industrial applications.
期刊最新文献
The impact of confinement on the deformation of an elastic particle under axisymmetric tube flow On the P-Irreducibility of Quintic Positive Polynomials An explicit Maclaurin series solution to non-autonomous and non-homogeneous evolution equation, Omega Calculus, and associated applications Can physics-informed neural networks beat the finite element method? Trust your source: quantifying source condition elements for variational regularisation methods
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1