{"title":"偏心肥厚影响心室纤维机电响应的计算模型","authors":"F. Bianco, P. C. Franzone, S. Scacchi, L. Fassina","doi":"10.1515/caim-2017-0010","DOIUrl":null,"url":null,"abstract":"Abstract The aim of this work is to study the effects of eccentric hypertrophy on the electromechanics of a single myocardial ventricular fiber by means of a one-dimensional finite-element strongly-coupled model. The electrical current ow model is written in the reference configuration and it is characterized by two geometric feedbacks, i.e. the conduction and convection ones, and by the mechanoelectric feedback due to stretchactivated channels. First, the influence of such feedbacks is investigated for both a healthy and a hypertrophic fiber in case of isometric simulations. No relevant discrepancies are found when disregarding one or more feedbacks for both fibers. Then, all feedbacks are taken into account while studying the electromechanical responses of fibers. The results from isometric tests do not point out any notable difference between the healthy and hypertrophic fibers as regards the action potential duration and conduction velocity. The length-tension relationships show increased stretches and reduced peak values for tension instead. The tension-velocity relationships derived from afterloaded isotonic and quick- release tests depict higher values of contraction velocity at smaller afterloads. Moreover, higher maximum shortenings are achieved during the isotonic contraction. In conclusion, our simulation results are innovative in predicting the electromechanical behavior of eccentric hypertrophic fibers.","PeriodicalId":37903,"journal":{"name":"Communications in Applied and Industrial Mathematics","volume":"8 1","pages":"185 - 209"},"PeriodicalIF":0.3000,"publicationDate":"2017-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computational modeling of the electromechanical response of a ventricular fiber affected by eccentric hypertrophy\",\"authors\":\"F. Bianco, P. C. Franzone, S. Scacchi, L. Fassina\",\"doi\":\"10.1515/caim-2017-0010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The aim of this work is to study the effects of eccentric hypertrophy on the electromechanics of a single myocardial ventricular fiber by means of a one-dimensional finite-element strongly-coupled model. The electrical current ow model is written in the reference configuration and it is characterized by two geometric feedbacks, i.e. the conduction and convection ones, and by the mechanoelectric feedback due to stretchactivated channels. First, the influence of such feedbacks is investigated for both a healthy and a hypertrophic fiber in case of isometric simulations. No relevant discrepancies are found when disregarding one or more feedbacks for both fibers. Then, all feedbacks are taken into account while studying the electromechanical responses of fibers. The results from isometric tests do not point out any notable difference between the healthy and hypertrophic fibers as regards the action potential duration and conduction velocity. The length-tension relationships show increased stretches and reduced peak values for tension instead. The tension-velocity relationships derived from afterloaded isotonic and quick- release tests depict higher values of contraction velocity at smaller afterloads. Moreover, higher maximum shortenings are achieved during the isotonic contraction. In conclusion, our simulation results are innovative in predicting the electromechanical behavior of eccentric hypertrophic fibers.\",\"PeriodicalId\":37903,\"journal\":{\"name\":\"Communications in Applied and Industrial Mathematics\",\"volume\":\"8 1\",\"pages\":\"185 - 209\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2017-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Applied and Industrial Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/caim-2017-0010\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Applied and Industrial Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/caim-2017-0010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
Computational modeling of the electromechanical response of a ventricular fiber affected by eccentric hypertrophy
Abstract The aim of this work is to study the effects of eccentric hypertrophy on the electromechanics of a single myocardial ventricular fiber by means of a one-dimensional finite-element strongly-coupled model. The electrical current ow model is written in the reference configuration and it is characterized by two geometric feedbacks, i.e. the conduction and convection ones, and by the mechanoelectric feedback due to stretchactivated channels. First, the influence of such feedbacks is investigated for both a healthy and a hypertrophic fiber in case of isometric simulations. No relevant discrepancies are found when disregarding one or more feedbacks for both fibers. Then, all feedbacks are taken into account while studying the electromechanical responses of fibers. The results from isometric tests do not point out any notable difference between the healthy and hypertrophic fibers as regards the action potential duration and conduction velocity. The length-tension relationships show increased stretches and reduced peak values for tension instead. The tension-velocity relationships derived from afterloaded isotonic and quick- release tests depict higher values of contraction velocity at smaller afterloads. Moreover, higher maximum shortenings are achieved during the isotonic contraction. In conclusion, our simulation results are innovative in predicting the electromechanical behavior of eccentric hypertrophic fibers.
期刊介绍:
Communications in Applied and Industrial Mathematics (CAIM) is one of the official journals of the Italian Society for Applied and Industrial Mathematics (SIMAI). Providing immediate open access to original, unpublished high quality contributions, CAIM is devoted to timely report on ongoing original research work, new interdisciplinary subjects, and new developments. The journal focuses on the applications of mathematics to the solution of problems in industry, technology, environment, cultural heritage, and natural sciences, with a special emphasis on new and interesting mathematical ideas relevant to these fields of application . Encouraging novel cross-disciplinary approaches to mathematical research, CAIM aims to provide an ideal platform for scientists who cooperate in different fields including pure and applied mathematics, computer science, engineering, physics, chemistry, biology, medicine and to link scientist with professionals active in industry, research centres, academia or in the public sector. Coverage includes research articles describing new analytical or numerical methods, descriptions of modelling approaches, simulations for more accurate predictions or experimental observations of complex phenomena, verification/validation of numerical and experimental methods; invited or submitted reviews and perspectives concerning mathematical techniques in relation to applications, and and fields in which new problems have arisen for which mathematical models and techniques are not yet available.