Tom E. Verhelst, P. Vangansbeke, P. De Frenne, Barbara D'hont, Q. Ponette, Luc Willems, H. Verbeeck, K. Calders
{"title":"陆地激光扫描森林边缘结构从声学指标解释鸟类生物声学特征","authors":"Tom E. Verhelst, P. Vangansbeke, P. De Frenne, Barbara D'hont, Q. Ponette, Luc Willems, H. Verbeeck, K. Calders","doi":"10.1002/rse2.334","DOIUrl":null,"url":null,"abstract":"Forest edges can be important strongholds for biodiversity and play a crucial role in the protection of forest interiors against edge effects. However, their potential to host biodiversity is dependent on the structure of the forest: Abrupt edges often fail to realise this potential. Yet, methods to accurately characterise and quantify forest edge abruptness are currently lacking. Here, we combine three‐dimensional forest structural data with biodiversity monitoring to assess the influence of forest edge structure on habitat suitability. We derived several structural metrics to determine forest edge abruptness using terrestrial laser scanning and applied these to six forest edge transects in Belgium. The local soundscapes were captured using audio recording devices (Audiomoths) and quantified using acoustic indices (AIs) (metrics on the soundscape characteristics). In each transect, the dawn choruses were recorded over a period of a week, both at the edge and the interior of the forest. No correlation between the AIs and bird species richness was found. There were clear differences between transects in the structural metrics and the recorded soundscapes. Some possible relations between both were found. In this proof of concept, we demonstrated innovative techniques to semi‐automatically classify forest structure and rapidly quantify soundscape characteristics and found a weak effect of forest edge structure on bird biophony.","PeriodicalId":21132,"journal":{"name":"Remote Sensing in Ecology and Conservation","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2023-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Forest edge structure from terrestrial laser scanning to explain bird biophony characteristics from acoustic indices\",\"authors\":\"Tom E. Verhelst, P. Vangansbeke, P. De Frenne, Barbara D'hont, Q. Ponette, Luc Willems, H. Verbeeck, K. Calders\",\"doi\":\"10.1002/rse2.334\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Forest edges can be important strongholds for biodiversity and play a crucial role in the protection of forest interiors against edge effects. However, their potential to host biodiversity is dependent on the structure of the forest: Abrupt edges often fail to realise this potential. Yet, methods to accurately characterise and quantify forest edge abruptness are currently lacking. Here, we combine three‐dimensional forest structural data with biodiversity monitoring to assess the influence of forest edge structure on habitat suitability. We derived several structural metrics to determine forest edge abruptness using terrestrial laser scanning and applied these to six forest edge transects in Belgium. The local soundscapes were captured using audio recording devices (Audiomoths) and quantified using acoustic indices (AIs) (metrics on the soundscape characteristics). In each transect, the dawn choruses were recorded over a period of a week, both at the edge and the interior of the forest. No correlation between the AIs and bird species richness was found. There were clear differences between transects in the structural metrics and the recorded soundscapes. Some possible relations between both were found. In this proof of concept, we demonstrated innovative techniques to semi‐automatically classify forest structure and rapidly quantify soundscape characteristics and found a weak effect of forest edge structure on bird biophony.\",\"PeriodicalId\":21132,\"journal\":{\"name\":\"Remote Sensing in Ecology and Conservation\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2023-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Remote Sensing in Ecology and Conservation\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1002/rse2.334\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Remote Sensing in Ecology and Conservation","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1002/rse2.334","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
Forest edge structure from terrestrial laser scanning to explain bird biophony characteristics from acoustic indices
Forest edges can be important strongholds for biodiversity and play a crucial role in the protection of forest interiors against edge effects. However, their potential to host biodiversity is dependent on the structure of the forest: Abrupt edges often fail to realise this potential. Yet, methods to accurately characterise and quantify forest edge abruptness are currently lacking. Here, we combine three‐dimensional forest structural data with biodiversity monitoring to assess the influence of forest edge structure on habitat suitability. We derived several structural metrics to determine forest edge abruptness using terrestrial laser scanning and applied these to six forest edge transects in Belgium. The local soundscapes were captured using audio recording devices (Audiomoths) and quantified using acoustic indices (AIs) (metrics on the soundscape characteristics). In each transect, the dawn choruses were recorded over a period of a week, both at the edge and the interior of the forest. No correlation between the AIs and bird species richness was found. There were clear differences between transects in the structural metrics and the recorded soundscapes. Some possible relations between both were found. In this proof of concept, we demonstrated innovative techniques to semi‐automatically classify forest structure and rapidly quantify soundscape characteristics and found a weak effect of forest edge structure on bird biophony.
期刊介绍:
emote Sensing in Ecology and Conservation provides a forum for rapid, peer-reviewed publication of novel, multidisciplinary research at the interface between remote sensing science and ecology and conservation. The journal prioritizes findings that advance the scientific basis of ecology and conservation, promoting the development of remote-sensing based methods relevant to the management of land use and biological systems at all levels, from populations and species to ecosystems and biomes. The journal defines remote sensing in its broadest sense, including data acquisition by hand-held and fixed ground-based sensors, such as camera traps and acoustic recorders, and sensors on airplanes and satellites. The intended journal’s audience includes ecologists, conservation scientists, policy makers, managers of terrestrial and aquatic systems, remote sensing scientists, and students.
Remote Sensing in Ecology and Conservation is a fully open access journal from Wiley and the Zoological Society of London. Remote sensing has enormous potential as to provide information on the state of, and pressures on, biological diversity and ecosystem services, at multiple spatial and temporal scales. This new publication provides a forum for multidisciplinary research in remote sensing science, ecological research and conservation science.