热分析在评价矿物溶液渗透木材中的应用

Q3 Materials Science Koroze a ochrana materialu Pub Date : 2018-12-01 DOI:10.2478/kom-2018-0019
T. Majstríková, J. Daňková, P. Mec
{"title":"热分析在评价矿物溶液渗透木材中的应用","authors":"T. Majstríková, J. Daňková, P. Mec","doi":"10.2478/kom-2018-0019","DOIUrl":null,"url":null,"abstract":"Abstract Interaction of mineral solutions with solid wood leads to saturation of the wood matrix, then to the deposition of mineral particles and eventually to reaction with wood components. In this way a partially or fully mineralized wood occurs in natural or artificial conditions, whose physical-mechanical properties are influenced by the retention and by the character of the solution. Targeted application of organosilanes is based on a similar principle that reduces the intake of liquid water and thus leads to an increase in durability, however, it also causes wood corrosion and consequent decrease in mechanical parameters. In this study, penetration of commercial organosilanes-based product Lukofob 39 into solid wood was described in order to determine the extent of the mineralized part into which the solution penetrated. In this case, characteristic mineral deposits are formed in the wood matrix and its quantification by thermal analysis can be advantageously used to describe the penetration of the solution. Based on the analyses of specific samples taken from primary specimens with different exposure times in the solution, it can be stated that with the increasing exposition time the penetration depth of the solution as well as the amount of mineral deposits increase. The shifts on the thermal analysis curves also show the corrosion effects of Lukofob 39 on the basic components of wood.","PeriodicalId":17911,"journal":{"name":"Koroze a ochrana materialu","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of thermal analysis for the evaluation of mineral solution penetration into wood\",\"authors\":\"T. Majstríková, J. Daňková, P. Mec\",\"doi\":\"10.2478/kom-2018-0019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Interaction of mineral solutions with solid wood leads to saturation of the wood matrix, then to the deposition of mineral particles and eventually to reaction with wood components. In this way a partially or fully mineralized wood occurs in natural or artificial conditions, whose physical-mechanical properties are influenced by the retention and by the character of the solution. Targeted application of organosilanes is based on a similar principle that reduces the intake of liquid water and thus leads to an increase in durability, however, it also causes wood corrosion and consequent decrease in mechanical parameters. In this study, penetration of commercial organosilanes-based product Lukofob 39 into solid wood was described in order to determine the extent of the mineralized part into which the solution penetrated. In this case, characteristic mineral deposits are formed in the wood matrix and its quantification by thermal analysis can be advantageously used to describe the penetration of the solution. Based on the analyses of specific samples taken from primary specimens with different exposure times in the solution, it can be stated that with the increasing exposition time the penetration depth of the solution as well as the amount of mineral deposits increase. The shifts on the thermal analysis curves also show the corrosion effects of Lukofob 39 on the basic components of wood.\",\"PeriodicalId\":17911,\"journal\":{\"name\":\"Koroze a ochrana materialu\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Koroze a ochrana materialu\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/kom-2018-0019\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Materials Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Koroze a ochrana materialu","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/kom-2018-0019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 0

摘要

矿物溶液与实木的相互作用导致木材基体饱和,然后导致矿物颗粒沉积,最终与木材组分发生反应。通过这种方式,部分或完全矿化的木材在自然或人工条件下产生,其物理机械性能受到保留和溶液特性的影响。有机硅烷的定向应用基于类似的原理,即减少液态水的摄入量,从而提高耐久性,然而,它也会导致木材腐蚀,从而导致机械参数下降。在本研究中,描述了商业有机硅烷基产品Lukofob 39对实木的渗透,以确定溶液渗透的矿化部分的程度。在这种情况下,木材基质中形成了特征矿床,通过热分析对其进行量化可以有利地用于描述溶液的渗透。通过对不同暴露时间的原生试样的具体样品分析可知,随着暴露时间的增加,溶液的渗透深度和矿床的数量都在增加。热分析曲线的变化也表明Lukofob 39对木材基本组分的腐蚀作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Application of thermal analysis for the evaluation of mineral solution penetration into wood
Abstract Interaction of mineral solutions with solid wood leads to saturation of the wood matrix, then to the deposition of mineral particles and eventually to reaction with wood components. In this way a partially or fully mineralized wood occurs in natural or artificial conditions, whose physical-mechanical properties are influenced by the retention and by the character of the solution. Targeted application of organosilanes is based on a similar principle that reduces the intake of liquid water and thus leads to an increase in durability, however, it also causes wood corrosion and consequent decrease in mechanical parameters. In this study, penetration of commercial organosilanes-based product Lukofob 39 into solid wood was described in order to determine the extent of the mineralized part into which the solution penetrated. In this case, characteristic mineral deposits are formed in the wood matrix and its quantification by thermal analysis can be advantageously used to describe the penetration of the solution. Based on the analyses of specific samples taken from primary specimens with different exposure times in the solution, it can be stated that with the increasing exposition time the penetration depth of the solution as well as the amount of mineral deposits increase. The shifts on the thermal analysis curves also show the corrosion effects of Lukofob 39 on the basic components of wood.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Koroze a ochrana materialu
Koroze a ochrana materialu Materials Science-Materials Science (all)
CiteScore
3.00
自引率
0.00%
发文量
8
审稿时长
14 weeks
期刊最新文献
Indoor corrosivity classification based on lead coupons Protective ability of lead corrosion products in indoor atmosphere with acetic acid vapours Anchorage length of patented wire cables in prestressed bridge girders Monitoring of the atmospheric corrosivity by resistive sensors Mitigation of chloride induced corrosion in reinforced concrete structures and its modeling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1