{"title":"耦合热弹性Timoshenko梁动静特性的计算解","authors":"T. Akano, A. Oyelade","doi":"10.24423/ENGTRANS.1149.20210126","DOIUrl":null,"url":null,"abstract":"The Timoshenko beam theory caters for transverse shear deformations, which are more pronounced in short beams. Previous works were examined, and Hamilton’s principle was used in deriving the governing equation. This research considers two dimensions (2-D): heat and displacement response. A more comprehensive mathematical expression that incorporates this 2-D model on the vibration of a coupled Timoshenko thermoelastic beam and axial deformation effect is formulated. The significance of this model will be expressed through its finite element method (FEM) formulation. The results compared favourably with those of previous works. It was re-established that the amplitude of deflections, as well as cross-sectional rotations, increases considerably as the aspect ratio of the beam decreases. In this way, for larger aspect ratios, the response of the beam is like the quasi-static heating condition. This is expected since the increase in the aspect ratio of the beam reduces its structural stiffness and consequently its natural frequencies. So, the amplitude and temporal period of its vibrations become greater. The beam under the applied thermal loading experiences thermally-induced vibrations. Also, the dynamic solution is substantially influenced by the coupling between strain and temperature fields. The results also reveal that the aspect ratio of the beam could have a significant impact on the vibratory response of the beam. Specifically, it is proportional to the amplitude and temporal period of the thermally-induced vibrations of the beam.","PeriodicalId":38552,"journal":{"name":"Engineering Transactions","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Computational Solution of the Dynamic and Static Behaviour of a Coupled Thermoelastic Timoshenko Beam\",\"authors\":\"T. Akano, A. Oyelade\",\"doi\":\"10.24423/ENGTRANS.1149.20210126\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Timoshenko beam theory caters for transverse shear deformations, which are more pronounced in short beams. Previous works were examined, and Hamilton’s principle was used in deriving the governing equation. This research considers two dimensions (2-D): heat and displacement response. A more comprehensive mathematical expression that incorporates this 2-D model on the vibration of a coupled Timoshenko thermoelastic beam and axial deformation effect is formulated. The significance of this model will be expressed through its finite element method (FEM) formulation. The results compared favourably with those of previous works. It was re-established that the amplitude of deflections, as well as cross-sectional rotations, increases considerably as the aspect ratio of the beam decreases. In this way, for larger aspect ratios, the response of the beam is like the quasi-static heating condition. This is expected since the increase in the aspect ratio of the beam reduces its structural stiffness and consequently its natural frequencies. So, the amplitude and temporal period of its vibrations become greater. The beam under the applied thermal loading experiences thermally-induced vibrations. Also, the dynamic solution is substantially influenced by the coupling between strain and temperature fields. The results also reveal that the aspect ratio of the beam could have a significant impact on the vibratory response of the beam. Specifically, it is proportional to the amplitude and temporal period of the thermally-induced vibrations of the beam.\",\"PeriodicalId\":38552,\"journal\":{\"name\":\"Engineering Transactions\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering Transactions\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24423/ENGTRANS.1149.20210126\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Transactions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24423/ENGTRANS.1149.20210126","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
On Computational Solution of the Dynamic and Static Behaviour of a Coupled Thermoelastic Timoshenko Beam
The Timoshenko beam theory caters for transverse shear deformations, which are more pronounced in short beams. Previous works were examined, and Hamilton’s principle was used in deriving the governing equation. This research considers two dimensions (2-D): heat and displacement response. A more comprehensive mathematical expression that incorporates this 2-D model on the vibration of a coupled Timoshenko thermoelastic beam and axial deformation effect is formulated. The significance of this model will be expressed through its finite element method (FEM) formulation. The results compared favourably with those of previous works. It was re-established that the amplitude of deflections, as well as cross-sectional rotations, increases considerably as the aspect ratio of the beam decreases. In this way, for larger aspect ratios, the response of the beam is like the quasi-static heating condition. This is expected since the increase in the aspect ratio of the beam reduces its structural stiffness and consequently its natural frequencies. So, the amplitude and temporal period of its vibrations become greater. The beam under the applied thermal loading experiences thermally-induced vibrations. Also, the dynamic solution is substantially influenced by the coupling between strain and temperature fields. The results also reveal that the aspect ratio of the beam could have a significant impact on the vibratory response of the beam. Specifically, it is proportional to the amplitude and temporal period of the thermally-induced vibrations of the beam.
期刊介绍:
Engineering Transactions (formerly Rozprawy Inżynierskie) is a refereed international journal founded in 1952. The journal promotes research and practice in engineering science and provides a forum for interdisciplinary publications combining mechanics with: Material science, Mechatronics, Biomechanics and Biotechnologies, Environmental science, Photonics, Information technologies, Other engineering applications. The journal publishes original papers covering a broad area of research activities including: experimental and hybrid techniques, analytical and numerical approaches. Review articles and special issues are also welcome. Following long tradition, all articles are peer reviewed and our expert referees ensure that the papers accepted for publication comply with high scientific standards. Engineering Transactions is a quarterly journal intended to be interesting and useful for the researchers and practitioners in academic and industrial communities.