{"title":"两个非线性发展方程的闭型波解","authors":"A. Hossain, M. Akbar, M. Azad","doi":"10.1080/23311940.2017.1396948","DOIUrl":null,"url":null,"abstract":"Abstract The exploration of closed form wave solutions of nonlinear evolution equations (NLEEs) is an important research area in the field of physical sciences and engineering. In this article, we investigate closed form wave solution of two nonlinear equations, namely, the time regularized long wave equation and the (2 + 1)-dimensional nonlinear Schrodinger equation by the modified simple equation method. These equations play significant role in nonlinear sciences. The solutions are obtained in explicit form of the variables in the considered equations. The derived solutions are revealed in the form of exponential and trigonometric functions including solitary and periodic solutions. It is shown that the method is effective and an essential mathematical tool for constructing the closed form wave solutions of NLEEs in mathematical physics.","PeriodicalId":43050,"journal":{"name":"Cogent Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/23311940.2017.1396948","citationCount":"6","resultStr":"{\"title\":\"Closed form wave solutions of two nonlinear evolution equations\",\"authors\":\"A. Hossain, M. Akbar, M. Azad\",\"doi\":\"10.1080/23311940.2017.1396948\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The exploration of closed form wave solutions of nonlinear evolution equations (NLEEs) is an important research area in the field of physical sciences and engineering. In this article, we investigate closed form wave solution of two nonlinear equations, namely, the time regularized long wave equation and the (2 + 1)-dimensional nonlinear Schrodinger equation by the modified simple equation method. These equations play significant role in nonlinear sciences. The solutions are obtained in explicit form of the variables in the considered equations. The derived solutions are revealed in the form of exponential and trigonometric functions including solitary and periodic solutions. It is shown that the method is effective and an essential mathematical tool for constructing the closed form wave solutions of NLEEs in mathematical physics.\",\"PeriodicalId\":43050,\"journal\":{\"name\":\"Cogent Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/23311940.2017.1396948\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cogent Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/23311940.2017.1396948\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cogent Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/23311940.2017.1396948","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Closed form wave solutions of two nonlinear evolution equations
Abstract The exploration of closed form wave solutions of nonlinear evolution equations (NLEEs) is an important research area in the field of physical sciences and engineering. In this article, we investigate closed form wave solution of two nonlinear equations, namely, the time regularized long wave equation and the (2 + 1)-dimensional nonlinear Schrodinger equation by the modified simple equation method. These equations play significant role in nonlinear sciences. The solutions are obtained in explicit form of the variables in the considered equations. The derived solutions are revealed in the form of exponential and trigonometric functions including solitary and periodic solutions. It is shown that the method is effective and an essential mathematical tool for constructing the closed form wave solutions of NLEEs in mathematical physics.