3D打印与纸质诊断相结合识别奶牛低钙血症

Art Matthew Mamaril, Dalton L. Glasco, F. L. Leal Yepes, J. G. Bell
{"title":"3D打印与纸质诊断相结合识别奶牛低钙血症","authors":"Art Matthew Mamaril, Dalton L. Glasco, F. L. Leal Yepes, J. G. Bell","doi":"10.1149/2754-2726/aca034","DOIUrl":null,"url":null,"abstract":"This paper describes the design, fabrication, and validation of a paper-based diagnostic device for the rapid diagnosis of hypocalcemia in dairy cattle at the point-of-care (POC). The device incorporates a 3D printed calcium ion-selective membrane (ISM) as the sensing element for free—unbound—calcium in real bovine whole blood samples. With a linear response range of 100 mM to 97.7 μM, the sensor covers the clinically relevant concentrations of Ca2+ associated with both healthy cattle as well as those suffering from hypocalcemia. The components of the Ca2+ ion-selective electrodes were successfully translated to a paper-based device to provide a sensing platform that is simple to use, disposable, and low-cost, and is therefore well-situated for applications at the POC. The paper-based calcium sensor showed a Nernstian response between 10 mM and 100 μM and required only 12 μl of sample to perform a measurement, which can be accomplished in less than two minutes without the need for time-consuming separation steps. The performance of the paper-based Ca2+ sensor was validated using the commercially available epoc® Blood Analysis System, which provided results within 5% of the data obtained with 3D printed Ca2+-ISM integrated paper-based device.","PeriodicalId":72870,"journal":{"name":"ECS sensors plus","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Identifying Hypocalcemia in Dairy Cattle by Combining 3D Printing and Paper Diagnostics\",\"authors\":\"Art Matthew Mamaril, Dalton L. Glasco, F. L. Leal Yepes, J. G. Bell\",\"doi\":\"10.1149/2754-2726/aca034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes the design, fabrication, and validation of a paper-based diagnostic device for the rapid diagnosis of hypocalcemia in dairy cattle at the point-of-care (POC). The device incorporates a 3D printed calcium ion-selective membrane (ISM) as the sensing element for free—unbound—calcium in real bovine whole blood samples. With a linear response range of 100 mM to 97.7 μM, the sensor covers the clinically relevant concentrations of Ca2+ associated with both healthy cattle as well as those suffering from hypocalcemia. The components of the Ca2+ ion-selective electrodes were successfully translated to a paper-based device to provide a sensing platform that is simple to use, disposable, and low-cost, and is therefore well-situated for applications at the POC. The paper-based calcium sensor showed a Nernstian response between 10 mM and 100 μM and required only 12 μl of sample to perform a measurement, which can be accomplished in less than two minutes without the need for time-consuming separation steps. The performance of the paper-based Ca2+ sensor was validated using the commercially available epoc® Blood Analysis System, which provided results within 5% of the data obtained with 3D printed Ca2+-ISM integrated paper-based device.\",\"PeriodicalId\":72870,\"journal\":{\"name\":\"ECS sensors plus\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ECS sensors plus\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1149/2754-2726/aca034\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ECS sensors plus","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1149/2754-2726/aca034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文介绍了一种纸基诊断装置的设计、制造和验证,用于在护理点快速诊断奶牛低钙血症(POC)。该设备包含一个3D打印的钙离子选择性膜(ISM),作为真实牛全血样本中游离-未结合钙的传感元件。该传感器的线性响应范围为100 mM至97.7μM,涵盖了健康牛和低钙血症牛的临床相关Ca2+浓度。Ca2+离子选择性电极的成分被成功地转化为纸基设备,以提供一种使用简单、一次性和低成本的传感平台,因此非常适合在POC应用。纸基钙传感器显示出在10mM和100μM之间的能斯特响应,并且只需要12μl样品就可以进行测量,这可以在不到两分钟的时间内完成,而不需要耗时的分离步骤。纸基Ca2+传感器的性能使用市售的epoc®血液分析系统进行了验证,该系统提供的结果在3D打印Ca2+-ISM集成纸基设备获得的数据的5%以内。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Identifying Hypocalcemia in Dairy Cattle by Combining 3D Printing and Paper Diagnostics
This paper describes the design, fabrication, and validation of a paper-based diagnostic device for the rapid diagnosis of hypocalcemia in dairy cattle at the point-of-care (POC). The device incorporates a 3D printed calcium ion-selective membrane (ISM) as the sensing element for free—unbound—calcium in real bovine whole blood samples. With a linear response range of 100 mM to 97.7 μM, the sensor covers the clinically relevant concentrations of Ca2+ associated with both healthy cattle as well as those suffering from hypocalcemia. The components of the Ca2+ ion-selective electrodes were successfully translated to a paper-based device to provide a sensing platform that is simple to use, disposable, and low-cost, and is therefore well-situated for applications at the POC. The paper-based calcium sensor showed a Nernstian response between 10 mM and 100 μM and required only 12 μl of sample to perform a measurement, which can be accomplished in less than two minutes without the need for time-consuming separation steps. The performance of the paper-based Ca2+ sensor was validated using the commercially available epoc® Blood Analysis System, which provided results within 5% of the data obtained with 3D printed Ca2+-ISM integrated paper-based device.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Review—Energy and Power Requirements for Wearable Sensors 3D Printed Carbon Nanotubes Reinforced Polydimethylsiloxane Flexible Sensors for Tactile Sensing Editors’ Choice—Review—Advances in Electrochemical Sensors: Improving Food Safety, Quality, and Traceability Field Testing of a Mixed Potential IoT Sensor Platform for Methane Quantification Automated Quantification of DNA Damage Using Deep Learning and Use of Synthetic Data Generated from Basic Geometric Shapes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1