用可听声音分析监测研磨过程的方法

Q2 Engineering Journal of Machine Engineering Pub Date : 2022-12-09 DOI:10.36897/jme/157255
M. Deja
{"title":"用可听声音分析监测研磨过程的方法","authors":"M. Deja","doi":"10.36897/jme/157255","DOIUrl":null,"url":null,"abstract":"Utilising microphones as audible sound sensors for monitoring a single-side grinding process with lapping kinematics is presented in the paper. The audible sound generated during grinding depended on the cutting properties of electroplated tools with D107 diamond grains and different thicknesses of the nickel bond. The tool wear affected the obtained technological effects such as material removal rate and the surface roughness of Al 2 O 3 ceramic samples. The relationship between the quantities that characterise the sound signal and the surface roughness of machined surfaces was examined with the use of spectral analysis of the sound signal in the frequency domain with a focus on the Ra parameter. The decreasing amplitude indicated a better surface finish, down to Ra = 0.23 µm. The developed method and the obtained results will facilitate the practical use of the electroplated tools in the lap-grinding technology without interrupting the process before obtaining the required surface roughness.","PeriodicalId":37821,"journal":{"name":"Journal of Machine Engineering","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Method of monitoring of the grinding process with lapping kinematics using audible sound analysis\",\"authors\":\"M. Deja\",\"doi\":\"10.36897/jme/157255\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Utilising microphones as audible sound sensors for monitoring a single-side grinding process with lapping kinematics is presented in the paper. The audible sound generated during grinding depended on the cutting properties of electroplated tools with D107 diamond grains and different thicknesses of the nickel bond. The tool wear affected the obtained technological effects such as material removal rate and the surface roughness of Al 2 O 3 ceramic samples. The relationship between the quantities that characterise the sound signal and the surface roughness of machined surfaces was examined with the use of spectral analysis of the sound signal in the frequency domain with a focus on the Ra parameter. The decreasing amplitude indicated a better surface finish, down to Ra = 0.23 µm. The developed method and the obtained results will facilitate the practical use of the electroplated tools in the lap-grinding technology without interrupting the process before obtaining the required surface roughness.\",\"PeriodicalId\":37821,\"journal\":{\"name\":\"Journal of Machine Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Machine Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.36897/jme/157255\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Machine Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36897/jme/157255","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 1

摘要

本文介绍了利用传声器作为可听声音传感器来监测具有研磨运动学的单面磨削过程。磨削时产生的可听声音取决于D107金刚石颗粒和不同镍结合层厚度的电镀刀具的切削性能。刀具磨损影响了材料去除率和陶瓷样品表面粗糙度等工艺效果。表征声音信号的数量与加工表面的表面粗糙度之间的关系通过使用声音信号的频谱分析在频域进行了检查,重点是Ra参数。减小幅度表明表面光洁度较好,Ra = 0.23µm。所开发的方法和得到的结果将有利于电镀刀具在研磨工艺中的实际应用,在获得所需表面粗糙度之前不会中断加工过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Method of monitoring of the grinding process with lapping kinematics using audible sound analysis
Utilising microphones as audible sound sensors for monitoring a single-side grinding process with lapping kinematics is presented in the paper. The audible sound generated during grinding depended on the cutting properties of electroplated tools with D107 diamond grains and different thicknesses of the nickel bond. The tool wear affected the obtained technological effects such as material removal rate and the surface roughness of Al 2 O 3 ceramic samples. The relationship between the quantities that characterise the sound signal and the surface roughness of machined surfaces was examined with the use of spectral analysis of the sound signal in the frequency domain with a focus on the Ra parameter. The decreasing amplitude indicated a better surface finish, down to Ra = 0.23 µm. The developed method and the obtained results will facilitate the practical use of the electroplated tools in the lap-grinding technology without interrupting the process before obtaining the required surface roughness.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Machine Engineering
Journal of Machine Engineering Engineering-Industrial and Manufacturing Engineering
CiteScore
2.70
自引率
0.00%
发文量
36
审稿时长
25 weeks
期刊介绍: ournal of Machine Engineering is a scientific journal devoted to current issues of design and manufacturing - aided by innovative computer techniques and state-of-the-art computer systems - of products which meet the demands of the current global market. It favours solutions harmonizing with the up-to-date manufacturing strategies, the quality requirements and the needs of design, planning, scheduling and production process management. The Journal'' s subject matter also covers the design and operation of high efficient, precision, process machines. The Journal is a continuator of Machine Engineering Publisher for five years. The Journal appears quarterly, with a circulation of 100 copies, with each issue devoted entirely to a different topic. The papers are carefully selected and reviewed by distinguished world famous scientists and practitioners. The authors of the publications are eminent specialists from all over the world and Poland. Journal of Machine Engineering provides the best assistance to factories and universities. It enables factories to solve their difficult problems and manufacture good products at a low cost and fast rate. It enables educators to update their teaching and scientists to deepen their knowledge and pursue their research in the right direction.
期刊最新文献
Fracture Mechanics-Based Modelling of Tool Wear in Machining Ti6Al4V Considering the Microstructure of Cemented Carbide Tools Fuzzy Logic in Risk Assessment of Production Machines Failure in Forming and Assembly Processes Influence of the Substrate Size on the Cooling Behavior and Properties of the DED-LB Process Automatic Detection of Axes for Turning Parts Enabling Federated Learning Services Using OPC UA, Linked Data and GAIA-X in Cognitive Production
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1